Granular Computing on Extensional Functional Dependencies for Information System

  • Qiusheng An
  • Junyi Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)


In this paper, a new approach to discover extensional functional dependencies for information systems is presented based on information granules using their bit representations. The principle of information granules, granular computing and the machine oriented model for data mining are investigated firstly. In addition, the approach to identify the classical functional dependencies, identity dependencies and partial dependencies is discussed and some conclusions on extensional functional dependencies are obtained. The information granules are represented with bit, then the data format can be closed to the inner representations of the computer, hence, the patterns contained in the information system can be directly mined.


Data Mining Functional Dependency Information Granule Granular Computing Attribute Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: Fuzzy Sets and Information Granularity. In: Gupta, M., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)Google Scholar
  2. 2.
    Zadeh, L.A.: Some Reflections on Information Granulation and its Centrality in Granular Computing, Computing with Words, the Computational Theory of Perceptions and Precisiated Natural Language. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 1–17 (2002)Google Scholar
  3. 3.
    Skowron, A., Stepaniuk, J.: Towards discovery of information granules. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 542–547. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Skowron, A., Stepaniuk, J.: Information Granules in Distributed Environment. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 357–365. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Polkowski, L., Skowron, A.: Towards Adaptive Calculus of Granules. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with words in information/intelligence systems 1. Foundations, Physica-Verlag, Heidelberg (1999)Google Scholar
  7. 7.
    Skowron, A., Stepaniuk, J.: Information Granules:Towards Foundations of Granular Computing. International Journal of Intelligent Systems 16, 57–85 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its certainty in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90(2), 111–127 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Yao, Y.Y.: On Modeling Data Mining with Granular Computing. In: Proceedings of the 25th Annual International Computer Software and Applications Conference (COMPSAC 2001), Chicago, USA, October 8-12, pp. 638–643. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  10. 10.
    Yao, Y.Y.: Stratified Rough Sets and Granular Computing. In: Dave, R.N., Sudkamp, T. (eds.) Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, New York, USA, June 10-12, pp. 800–804. IEEE Press, Los Alamitos (1999)Google Scholar
  11. 11.
    Lin, T.Y.: Association Rules in Semantically Rich Relations.Granular Computing approach. In: Proceedings of International Workshop on Rough Set Theory and Granular Computing, Bulletin of International Rough Set Society, Matsue, Shimane, Japan, May 20-22, vol. 5(1/2), pp. 143–149 (2001)Google Scholar
  12. 12.
    Lin, T.Y.: Data Modeling for Data Mining. In: Dasarathy(eds, B.V. (ed.) Data Mining and Knowledge Discovery:Theory, Tools and Technology IV. Proceedings of SPIE, vol. 4730, pp. 138–145 (2002)Google Scholar
  13. 13.
    Lin, T.Y.: Granular Computing in Data Mining. In: Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 21–42 (2002)Google Scholar
  14. 14.
    Guan, J.W., Bell, D.A.: Rough computational methods for information systems. Artificial Intelligence 105, 77–103 (1998)zbMATHCrossRefGoogle Scholar
  15. 15.
    Wang, G.Y., Liu, F.: The Inconsistency in Rough Set Based Rule Generation. In: The Second International Conference on Rough Sets and Current Trends in Computing, pp. 332–339 (2000)Google Scholar
  16. 16.
    Wang, G.Y.: Rough Set theory and knowledge acquisition. The publisher of Xi’an Jiaotong university (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Qiusheng An
    • 1
  • Junyi Shen
    • 2
  1. 1.Department of Mathematics and ComputerShanxi Normal UniversityLinfenChina
  2. 2.School of Electronics and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations