Advertisement

Toward Rough Set Foundations. Mereological Approach

  • Lech Polkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)

Abstract

In this semi-plenary lecture, we would like to discuss rough inclusions defined in Rough Mereology, a joint idea with Andrzej Skowron, as a basis for models for rough set theory. We demonstrate that mereological theory of rough sets extends and generalizes rough set theory written down in naive set theory framework.

Keywords

rough set theory rough mereology rough inclusions granulation granular rough set theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Fayyad, U.M., Piatetsky–Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)Google Scholar
  2. 2.
    Borkowski, L. (ed.): Jan Łukasiewicz. Selected Works. North Holland, Polish Sci. Publ., Amsterdam, Warsaw (1970)Google Scholar
  3. 3.
    Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Słowiński, R. (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)Google Scholar
  4. 4.
    Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation of a preference relation in a pairwise comparison table. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems, pp. 13–36. Physica, Heidelberg (1998)Google Scholar
  5. 5.
    Hoehle, U.: Quotients with respect to similarity relations. Fuzzy Sets Syst 27, 31–44 (1988)zbMATHCrossRefGoogle Scholar
  6. 6.
    Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Physica, Heidelberg (2003)zbMATHGoogle Scholar
  7. 7.
    Leśniewski, S.: On the foundations of mathematics. Topoi 2, 7–52 (1982)Google Scholar
  8. 8.
    Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Rough Sets, Granular Computing and Data Mining. Physica, Heidelberg (2001)Google Scholar
  9. 9.
    Ling, C.-H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)MathSciNetGoogle Scholar
  10. 10.
    Łukasiewicz, J.: Die Logischen Grundlagen der Wahrscheinlichtkeitsrechnung. Kraków (1913); Eng. transl. In: [2]Google Scholar
  11. 11.
    Novotný, M., Pawlak, Z.: Partial dependency of attributes. Bull. Polish Acad. Sci. Math. 36, 453–458 (1989)Google Scholar
  12. 12.
    Novotný, M., Pawlak, Z.: On rough equalities. Bull. Polish Acad. Sci. Math. 33, 99–104 (1985)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough–Neural Computing. Techniques for Computing with Words. Springer, Berlin (2004)zbMATHGoogle Scholar
  14. 14.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1992)Google Scholar
  15. 15.
    Pawlak, Z.: Rough sets. Intern. J. Comp. Inf. Sci. 11, 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pawlak, Z., Skowron, A.: Rough membership functions. In: Yager, R.R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster–Schafer Theory of Evidence, pp. 251–271. Wiley, New York (1994)Google Scholar
  17. 17.
    Polkowski, L.: Rough Sets. Mathematical Foundations. Physica, Heidelberg (2002)zbMATHGoogle Scholar
  18. 18.
    Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15(4), 333–365 (1997)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal for Intelligent Systems 16, 57–85 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Tsumoto, S.: Automated induction of medical system expert rules from clinical databases based on rough set theory. Information Sciences 112, 67–84 (1998)CrossRefGoogle Scholar
  21. 21.
    Valverde, L.: On the structure of F–indistinguishability operators. Fuzzy Sets Syst. 17, 313–328 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yao, Y.Y.: Information granulation and approximation. In: [13]Google Scholar
  23. 23.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Information Sciences 3, 177–200 (1971)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zadeh, L.A., Kacprzyk, J. (eds.): Computing with Words in Information/Intelligent Systems 1. Physica, Heidelberg (1999)zbMATHGoogle Scholar
  26. 26.
    Ziarko, W.: Variable precision rough set model. J. Computer and System Sciences 46, 39–59 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lech Polkowski
    • 1
    • 2
  1. 1.Polish–Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Department of Mathematics and Computer ScienceUniversity of Warmia and MazuryOlsztynPoland

Personalised recommendations