On the Correspondence between Approximations and Similarity

  • Patrick Doherty
  • Andrzej Szałas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3066)


This paper focuses on the use and interpretation of approximate databases where both rough sets and indiscernibility partitions are generalized and replaced by approximate relations and similarity spaces. Similarity spaces are used to define neighborhoods around individuals and these in turn are used to define approximate sets and relations. There is a wide spectrum of choice as to what properties the similarity relation should have and how this affects the properties of approximate relations in the database. In order to make this interaction precise, we propose a technique which permits specification of both approximation and similarity constraints on approximate databases and automatic translation between them. This technique provides great insight into the relation between similarity and approximation and is similar to that used in modal correspondence theory. In order to automate the translations, quantifier elimination techniques are used.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik. Mathematische Annalen 110, 390–413 (1935)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bull, R.A., Segerberg, K.: Basic modal logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 1–88. D. Reidel Pub. Co., 20198402Google Scholar
  3. 3.
    Chellas, B.F.: Modal Logic - an Introduction. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  4. 4.
    Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closed-world reasoning in rough knowledge databases. In: [13] (2003)Google Scholar
  5. 5.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Approximation transducers and trees: A technique for combining rough and crisp knowledge. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18(3), 297–336 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Information granules for intelligent knowledge structures. In: Proc. 9th International Conference on rough sets, fuzzy sets, data mining and granular computing. LNCS, Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Proceedings of 26th German Conference on Artificial Intelligence, Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Methuen and Co. Ltd., London (1968)zbMATHGoogle Scholar
  10. 10.
    Kachniarz, J., Szałas, A.: On a static approach to verification of integrity constraints in relational databases. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications, pp. 97–109. Springer Physica- Verlag (2001)Google Scholar
  11. 11.
    Liau, C.-J.: An overview of rough set semantics for modal and quantifier logics. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(1), 93–118 (2000)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pp. 159–181. Kluwer, Dordrecht (1999)Google Scholar
  13. 13.
    Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neuro Computing: Techniques for Computing with Words. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  15. 15.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence & Soft Computing, Raleigh NC, pp. 17–33 (1997) (Bookwrights)Google Scholar
  17. 17.
    Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering 12(2), 331–336 (2000)CrossRefGoogle Scholar
  18. 18.
    Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3, 605–620 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 167–247. D. Reidel Pub. Co., Dordrechtz (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrick Doherty
    • 1
  • Andrzej Szałas
    • 1
    • 2
  1. 1.Dept. of Computer and Information ScienceLinköping UniversityLinköpingSweden
  2. 2.The College of Economics and Computer ScienceOlsztynPoland

Personalised recommendations