Skip to main content

Genetic Programming Neural Networks as a Bioinformatics Tool for Human Genetics

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Abstract

The identification of genes that influence the risk of common, complex diseases primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for detecting genetic effects that are dependent solely or partially on interactions. We have previously introduced a genetic programming neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. Previous empirical studies suggest GPNN has excellent power for identifying gene-gene interactions. The goal of this study was to compare the power of GPNN and stepwise logistic regression (SLR) for identifying gene-gene interactions. Using simulated data, we show that GPNN has higher power to identify gene-gene interactions than SLR. These results indicate that GPNN may be a useful pattern recognition approach for detecting gene-gene interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kardia, S.L.R.: Context-dependent genetic effects in hypertension. Curr. Hypertens. Reports. 2, 32–38 (2000)

    Article  Google Scholar 

  2. Moore, J.H., Williams, S.M.: New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002)

    Article  Google Scholar 

  3. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. John Wiley & Sons Inc., New York (2000)

    Book  MATH  Google Scholar 

  4. Concato, J., Feinstein, A.R., Holford, T.R.: The risk of determining risk with multivariable models. Ann. Int. Med. 118, 201–210 (1996)

    Google Scholar 

  5. Peduzzi, P., Concato, J., Kemper, E., Holford, T.R., Feinstein, A.R.: A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 49, 1373–1379 (1996)

    Article  Google Scholar 

  6. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  7. Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., Moore, J.H.: Optimization of neural network architecture using genetic programming improves detection of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4, 28 (2003)

    Article  Google Scholar 

  8. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network, vol. II, pp. 397–404. IEEE Press, Los Alamitos (1991)

    Google Scholar 

  9. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  10. Moore, J.H.: Cross validation consistency for the assessment of genetic programming results in microarray studies. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 99–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Moore, J.H., Parker, J.S., Olsen, N.J., Aune, T.S.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genet. Epidemiol. 23, 57–69 (2002)

    Article  Google Scholar 

  12. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)

    Article  Google Scholar 

  13. Culverhouse, R., Suarez, B.K., Lin, J., Reich, T.: A Perspective on Epistasis: Limits of Models Displaying No Main Effect. Am. J. Hum. Genet. 70, 461–471 (2002)

    Article  Google Scholar 

  14. Templeton, A.R.: Epistasis and complex traits. In: Wolf, J., Brodie III, B., Wade, M. (eds.) Epistasis and Evolutionary Process, Oxford University Press, Oxford (2000)

    Google Scholar 

  15. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56, 73–82 (2003)

    Article  Google Scholar 

  16. Ashford, J.W., Mortimer, J.A.: Non-familial Alzheimer’s disease is mainly due to genetic factors. J. Alzheimers Dis. 4, 169–177 (2002)

    Google Scholar 

  17. Hemminki, K., Mutanen, P.: Genetic epidemiology of multistage carcinogenesis. Mutat. Res. 473, 11–21 (2001)

    Article  Google Scholar 

  18. Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A., White, B.C.: Application of genetic algorithms to the discovery of complex genetic models for simulations studies in human genetics. In: Langdon, W.B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Algorithm Conference, pp. 1150–1155. Morgan Kaufman Publishers, San Francisco (2002)

    Google Scholar 

  19. Ott, J.: Neural networks and disease association. Am. J. Med. Genet. 105, 60–61 (2001)

    Article  Google Scholar 

  20. Rowland, J.J.: Generalisation and model selection in supervised learning with evolutionary computation. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 119–130. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ritchie, M.D., Coffey, C.S., Moore, J.H. (2004). Genetic Programming Neural Networks as a Bioinformatics Tool for Human Genetics. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics