Skip to main content

Elliptic Curves of Large Rank and Small Conductor

  • Conference paper
Algorithmic Number Theory (ANTS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3076))

Included in the following conference series:

Abstract

For r=6,7,...,11 we find an elliptic curve E/Q of rank at least r and the smallest conductor known, improving on the previous records by factors ranging from 1.0136 (for r=6) to over 100 (for r=10 and r=11). We describe our search methods, and tabulate, for each r=5,6,...,11, the five curves of lowest conductor, and (except for r=11) also the five of lowest absolute discriminant, that we found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, D.: Uniformity of stably integral points on elliptic curves. Invent. Math. 127(2), 307–317 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Birch, B.J., Swinnerton-Dyer, H.P.F.: Notes on elliptic curves. I. J. reine angew. Math. 212, 7–25 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  3. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc. 14(4), 843–939 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brumer, A.: The average rank of elliptic curves. I. Invent. Math. 109(3), 445–472 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brumer, A., McGuinness, O.: The behavior of the Mordell-Weil group of elliptic curves. Bull. Amer. Math. Soc (N.S.) 23(2), 375–382 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Conrad, B., Diamond, F., Taylor, R.: Modularity of certain potentially Barsotti-Tate Galois representations. J. Amer. Math. Soc. 12(2), 521–567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conrey, J.B.: The Riemann hypothesis. Notices Amer. Math. Soc. 50(3), 341–353 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Conrey, J.B., Gonek, S.M.: High moments of the Riemann zeta-function. Duke Math. J. 107(3), 577–604 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Diamond, F.: On deformation rings and Hecke rings. Ann. of Math (2) 144(1), 137–166 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cremona, J.E.: Algorithms for modular elliptic curves. Cambridge University Press, Cambridge (1992); 2 edn. (1997), Book and data electronically available at www.maths.nottingham.ac.uk/personal/jec/

  11. Elkies, N.D., Rogers, N.F.: Elliptic curves x3 + y3 = k of high rank. To appear in the ANTS-VI proceedings, http://www.arxiv.org/abs/math.NT/0403116

  12. Goldfeld, D.: Sur les produits partiels eulériens attachés aux courbes elliptiques (French English summary) [On the partial Euler products associated with elliptic curves] C. R. Acad. Sci. Paris Sér. I Math. 294(14), 471–474 (1982)

    MATH  MathSciNet  Google Scholar 

  13. Gross, R., Silverman, J.: S-integer points on elliptic curves. Pacific J. Math. 167(2), 263–288 (1995)

    MATH  MathSciNet  Google Scholar 

  14. Hindry, M., Silverman, J.H.: The canonical height and integral points on elliptic curves. Invent. Math. 93(2), 419–450 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lang, S.: Elliptic curves: Diophantine analysis. In: Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer, Berlin (1978)

    Google Scholar 

  16. Martin, R., McMillen, W.: An elliptic curve over Q with rank at least 24. Posted to the NMBRTHRY mailing list on May 2, 2000 by V. Miller (2000), Electronically available from listserv.nodak.edu/archives/nmbrthry.html and directly from www.math.harvard.edu/~elkies/rk24_1.html

  17. McConnell, I.: Arithmetic of Plane Elliptic Curves (APECS). Computer program written in MapleTM, available from ftp.math.mcgill.ca/pub/apecs

  18. Mestre, J.-F.: Construction d’une courbe elliptique de rang ≥ 12 (French English summary) [Construction of an elliptic curve of rank ≥ 12] C. R. Acad. Sci. Paris Sér. I Math. 295(12), 643–644 (1982)

    MATH  MathSciNet  Google Scholar 

  19. Mestre, J.-F.: Formules explicites et minorations de conducteurs de variétés algébriques (French) [Explicit formulas and lower bounds for the conductors of algebraic varieties] Compositio Math. 58(2), 209–232 (1986)

    MATH  MathSciNet  Google Scholar 

  20. Mestre, J.-F.: Courbes elliptiques de rang ≥ 11 sur Q(t) (French) [Elliptic curves with rank ≥ 11 over Q( t)] C. R. Acad. Sci. Paris Sér. I Math. 313(3), 139–142 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Mestre, J.-F.: Un exemple de courbe elliptique sur Q de rang ≥ 15 (French) [An example of an elliptic curve over Q with rank ≥ 15] C. R. Acad. Sci. Paris Sér. I Math. 314, 453–455 (1992)

    MATH  MathSciNet  Google Scholar 

  22. Montgomery, H.L.: Extreme values of the Riemann zeta function. Comment. Math. Helv. 52(4), 511–518 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mordell, L.J.: On the Rational Solutions of the Indeterminate Equations of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21, 179–192 (1922-1923)

    Google Scholar 

  24. Oesterlé, J.: Nouvelles approches du “théorème” de Fermat. (French) [New approaches to Fermat’s “theorem”] Séminaire Bourbaki, Vol. 1987/88, Astérisque No. 161–162 (1988); Exp. No. 694, 4, 165–186 (1989)

    Google Scholar 

  25. Rajan, C.S.: On the size of the Shafarevich-Tate group of elliptic curves over function fields. Compositio Math. 105(1), 29–41 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Šafarevič, I.R., Tate, J.T.: The rank of elliptic curves. Soviet Math. Dokl. 8, 917–920 (1967); [trans. J. W. S. Cassels from Dokl. Akad. Nauk SSSR 175, 770–773 (1967)]

    Google Scholar 

  27. Silverman, J.H.: A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves. J. reine angew. Math. 378, 60–100 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stein, W., Jorza, A., Balakrishnan, J.: The Smallest Conductor for an Elliptic Curve of Rank Four is Composite, Available at modular.fas.harvard.edu/papers/rank4

  29. Stein, W.A., Watkins, M.: A Database of Elliptic Curves—First Report. In: Fieker, C., Kohel, D. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 267–275. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Stroeker, R.J., Tzanakis, N.: On the elliptic logarithm method for elliptic Diophantine equations: reflections and an improvement. Experiment. Math. 8(2), 135–149 (1999)

    MATH  MathSciNet  Google Scholar 

  31. Szpiro, L.: Discriminant et conducteur des courbes elliptiques (French) [Discriminant and conductor of elliptic curves] Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988), Astérisque (183), 7–18 (1990)

    Google Scholar 

  32. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. of Math (2) 141(3), 553–572 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ulmer, D.: Elliptic curves with large rank over function fields. Ann. of Math (2) 155(1), 295–315 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ulmer, D.: Elliptic curves and analogies between number fields and function fields. To appear in Heegner points and Rankin L-series, MSRI Publications 48, Cambridge University Press, New York (2004) (Preprint), available at www.arxiv.org/abs/math.NT/0305320

  35. Vojta, P.: A higher-dimensional Mordell conjecture. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic geometry (Storrs, Connecticut 1984), pp. 341–353. Springer, New York (1986)

    Google Scholar 

  36. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. of Math (2) 141(3), 443–551 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Womack, T.: Best known conductors for elliptic curves of given rank, webpage copied to www.math.harvard.edu/~elkies/womack2001.html

  38. Zagier, D.: Large integral points on elliptic curves. Math. Comp. 48(177), 425–436 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elkies, N.D., Watkins, M. (2004). Elliptic Curves of Large Rank and Small Conductor. In: Buell, D. (eds) Algorithmic Number Theory. ANTS 2004. Lecture Notes in Computer Science, vol 3076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24847-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24847-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22156-2

  • Online ISBN: 978-3-540-24847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics