Skip to main content

Fast and Light Boosting for Adaptive Mining of Data Streams

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3056))

Included in the following conference series:

Abstract

Supporting continuous mining queries on data streams requires algorithms that (i) are fast, (ii) make light demands on memory resources, and (iii) are easily to adapt to concept drift. We propose a novel boosting ensemble method that achieves these objectives. The technique is based on a dynamic sample-weight assignment scheme that achieves the accuracy of traditional boosting without requiring multiple passes through the data. The technique assures faster learning and competitive accuracy using simpler base models. The scheme is then extended to handle concept drift via change detection. The change detection approach aims at significant data changes that could cause serious deterioration of the ensemble performance, and replaces the obsolete ensemble with one built from scratch. Experimental results confirm the advantages of our adaptive boosting scheme over previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Bagging predictors. In: ICML (1996)

    Google Scholar 

  2. Dietterich, T.: Ensemble methods in machine learning. Multiple Classifier Systems (2000)

    Google Scholar 

  3. Domeniconi, C., Gunopulos, D.: Incremental support vector machine construction. In: ICDM (2001)

    Google Scholar 

  4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: ACM SIGKDD (2000)

    Google Scholar 

  5. Dong, G., Han, J., Lakshmanan, L.V.S., Pei, J., Wang, H., Yu, P.S.: Online mining of changes from data streams: Research problems and preliminary results. In: ACM SIGMOD MPDS (2003)

    Google Scholar 

  6. Fern, A., Givan, R.: Online ensemble learning: An empirical study. In: ICML (2000)

    Google Scholar 

  7. Frank, E., Holmes, G., Kirkby, R., Hall, M.: Racing committees for large datasets. Discovery Science (2002)

    Google Scholar 

  8. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: ICML (1996)

    Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. The Annals of Statistics 28(2), 337–407 (1998)

    Article  MathSciNet  Google Scholar 

  10. Ganti, V., Gehrke, J., Ramakrishnan, R.: andW. Loh. Mining data streams under block evolution. SIGKDD Explorations 3(2), 1–10 (2002)

    Article  Google Scholar 

  11. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: ACM SIGKDD (2001)

    Google Scholar 

  12. Oza, N., Russell, S.: Experimental comparisons of online and batch versions of bagging and boosting. In: ACM SIGKDD (2001)

    Google Scholar 

  13. Schapire, R., Freund, Y., Bartlett, P.: Boosting the margin: A new explanation for the effectiveness of voting methods. In: ICML (1997)

    Google Scholar 

  14. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Credit card fraud detection using meta-learning: Issues and initial results. In: AAAI 1997 Workshop on Fraud Detection and Risk Management (1997)

    Google Scholar 

  15. Street, W., Kim, Y.: A streaming ensemble algorithm (sea) for large-scale classification. In: ACM SIGKDD (2001)

    Google Scholar 

  16. Wang, H., Fan, W., Yu, P., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: ACM SIGKDD (2003)

    Google Scholar 

  17. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chu, F., Zaniolo, C. (2004). Fast and Light Boosting for Adaptive Mining of Data Streams. In: Dai, H., Srikant, R., Zhang, C. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2004. Lecture Notes in Computer Science(), vol 3056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24775-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24775-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22064-0

  • Online ISBN: 978-3-540-24775-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics