Advertisement

Investigating Discrete Controllability with Kleene Algebra

  • Hans Bherer
  • Jules Desharnais
  • Marc Frappier
  • Richard St-Denis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3051)

Abstract

A Discrete Event System (DES) is a dynamic system whose evolution is governed by the instantaneous occurrence of physical events. DES arise in many areas such as robotics, manufacturing, communication networks, and transportation. They are often modelled by languages or automata over an alphabet of symbols denoting the events. In 1987, Ramadge and Wonham initiated a very successful approach to the control of DES [10, 13], which was subsequently extended by themselves and others. Textbooks or course notes on the subject include [1, 7, 12].

Keywords

Complete Lattice Relation Algebra Path Algebra Discrete Event System Supervise Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic Publishers, Boston (1999)zbMATHGoogle Scholar
  2. 2.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)zbMATHGoogle Scholar
  3. 3.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  4. 4.
    Desharnais, J., Möller, B.: Characterizing determinacy in Kleene algebras. Information Sciences 139, 253–273 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    von Karger, B., Hoare, C.A.R.: Sequential calculus. Information Processing Letters 53, 123–130 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Languages and Systems 19, 427–443 (1997)CrossRefGoogle Scholar
  7. 7.
    Kumar, R., Garg, V.K.: Modeling and Control of Logical Discrete Event Systems. Kluwer Academic Publishers, Boston (1995)zbMATHGoogle Scholar
  8. 8.
    Möller, B.: Derivation of graph and pointer algorithms. In: Möller, B., Schuman, S., Partsch, H. (eds.) Formal Program Development. LNCS, vol. 755, pp. 123–160. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Möller, B.: Residuals and detachment. Personal communication (2001)Google Scholar
  10. 10.
    Ramadge, P.J.G., Wonham, W.M.: Supervisory control of a class of discreteevent processes. SIAM J. on Control and Optimization 25, 206–230 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proceedings of the IEEE 77, 81–98 (1989)CrossRefGoogle Scholar
  12. 12.
    Wonham, W.M.: Notes on control of discrete event systems. Systems Control Group, Edward S. Rogers Sr. Dept. of Electrical & Computer Engineering, University of Toronto, pp. xiv+356 (2002), Available at http://www.control.utoronto.ca/people/profs/wonham/wonham.html
  13. 13.
    Wonham, W.M., Ramadge, P.J.G.: On the supremal controllable sublanguage of a given language. SIAM J. on Control and Optimization 25, 637–659 (1987)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Young, S.D., Garg, V.K.: Optimal sensor and actuator choices for discrete event systems. In: 31st Allerton Conf. on Communication, Control, and Computing, Allerton, IL (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hans Bherer
    • 1
  • Jules Desharnais
    • 1
  • Marc Frappier
    • 2
  • Richard St-Denis
    • 2
  1. 1.Département d’informatique et de génie logicielUniversité LavalQuébecCanada
  2. 2.Département de mathématiques et d’informatiqueUniversité de SherbrookeSherbrookeCanada

Personalised recommendations