Advertisement

Kleene Algebra with Relations

  • Jules Desharnais
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3051)

Abstract

Matrices over a Kleene algebra with tests themselves form a Kleene algebra. The matrices whose entries are tests form an algebra of relations if the converse of a matrix is defined as its transpose. Abstracting from this concrete setting yields the concept of Kleene algebra with relations.

Keywords

Transitive Closure Unary Operator Relation Algebra Identity Relation Relational Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, C.J.: Galois connections presented calculationally. Technical report, Eindhoven University of Technology, Department of Mathematics and Computer Science (1992)Google Scholar
  2. 2.
    Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  3. 3.
    Cardoso, R.: Untersuchung paralleler Programme mit relationenalgebraischen Methoden. Diplomarbeit, Institut für Informatik, Technische Universität München (1982)Google Scholar
  4. 4.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)zbMATHGoogle Scholar
  5. 5.
    Desharnais, J.: Monomorphic characterization of n-ary direct products. Information Sciences – An International Journal 119, 275–288 (1999)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Desharnais, J., Möller, B.: Characterizing determinacy in Kleene algebras. Information Sciences 139, 253–273 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hoare, C.A.R., Jifeng, H., Sanders, J.W.: Prespecification in data refinement. Information Processing Letters 25, 71–76 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jipsen, P., Maddux, R.: Nonrepresentable sequential algebras. Logic Journal of the IGPL 5, 565–574 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    von Karger, B., Hoare, C.A.R.: Sequential calculus. Information Processing Letters 53, 123–130 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    von Karger, B.: Sequential calculus. Technical Report ProCos II: [Kiel BvK 15/11], Christian-Albrechts Universität zu Kiel (1995)Google Scholar
  12. 12.
    Kempf, P., Winter, M.: Relational unsharpness and processes. In: Berghammer, R., Möller, B. (eds.) Participant’s Proceedings of the 7th International Seminar on Relational Methods in Computer Science, in combination with 2nd InternationalWorkshop on Applications of Kleene Algebra, Bad Malente (near Kiel), Germany, Institut für Informatik und Praktische Mathematik, Christian-Albrechts- Universität zu Kiel, pp. 270–276 (2003)Google Scholar
  13. 13.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Information and Computation 110, 366–390 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kozen, D.: Kleene algebras with tests. ACM Transactions on Programming Languages and Systems 19, 427–443 (1997)CrossRefGoogle Scholar
  15. 15.
    Kozen, D.: Typed Kleene algebra. Technical Report 98-1669, Computer Science Department, Cornell University (1998)Google Scholar
  16. 16.
    Kozen, D.: Myhill-Nerode relations on automatic systems and the completeness of Kleene algebra. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 27–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Maddux, R.D.: On the derivation of identities involving projection functions. Technical report, Department of Mathematics, Iowa State University (1993)Google Scholar
  18. 18.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  19. 19.
    Milner, R.: Communication and Concurrency. Prentice Hall International Series in Computer Science (1989)Google Scholar
  20. 20.
    Möller, B.: Derivation of graph and pointer algorithms. In: Möller, B., Schuman, S., Partsch, H. (eds.) Formal Program Development. LNCS, vol. 755, pp. 123–160. Springer, Heidelberg (1993)Google Scholar
  21. 21.
    Ng, K.C.: Relation algebras with transitive closure. PhD thesis. University of California, Berkeley (1984)Google Scholar
  22. 22.
    Ng, K.C., Tarski, A.: Relation algebras with transitive closure. Abstract 742-02- 09. Notices of the American Mathematical Society 24 (1977)Google Scholar
  23. 23.
    Schmidt, G., Ströhlein, T.: Relations and Graphs. EATCS Monographs in Computer Science. Springer, Berlin (1993)zbMATHGoogle Scholar
  24. 24.
    Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous relation algebra. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relationa Methods in Computer Science, Springer, Heidelberg (1997)Google Scholar
  25. 25.
    Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jules Desharnais
    • 1
  1. 1.Département d’informatique et de génie logicielUniversité LavalQuébecCanada

Personalised recommendations