Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

Abstract

Given a number of obstacles in a plane, the problem of computing a geodesic (or the shortest path) between two points has been studied extensively. However, the case where the obstacles are circular discs has not been explored as much as it deserves. In this paper, we present an algorithm to compute a geodesic among a set of mutually disjoint discs, where the discs can have different radii. We devise two filters, an ellipse filter and a convex hull filter, which can significantly reduce the search space. After filtering, we apply Dijkstra’s algorithm to the remaining discs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Asano, T., Guibas, L., Hershberger, J., Imai, H.: Visibility of disjoint polyongs. Algorithmica 1, 49–63 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alexopoulos, C., Griffin, P.M.: Path planning for a mobile robot. IEEE Transactions on Systems, Man, and Cybernetics 22(2), 318–322 (1992)

    Article  Google Scholar 

  3. Edelsbrunner, H., Guibas, L.J.: Topologically sweeping an arrangement. J. Comput. System Sci. 38, 165–194 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gavrilova, M.: On a nearest-neighbor problem under Minkowski and power metrics for large data sets. The Journal of Supercomputing 22, 87–98 (2002)

    Article  MATH  Google Scholar 

  5. Ghosh, S.K., Mount, D.: An output sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20, 888–910 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kapoor, S., Maheswari, S.N.: Efficient algorithms for Euclidean shortest paths and visibility problems with polygonal obstacles. In: Proc. 4th Annu. ACM Sympos. Comput. Geometry, pp. 178–182 (1988)

    Google Scholar 

  7. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology. Computer Aided Geometric Design 18, 541–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry. Computer Aided Geometric Design 18, 563–585 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. In: Proc. 9th Annu. ACM Sympos. Comput. Geom., pp. 308–317 (1993)

    Google Scholar 

  10. Mucke, E.P., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations. In: Proc. 12th Annu. ACM Sympos. Comput. Geom, pp. 274–283 (1996)

    Google Scholar 

  11. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester (2000)

    MATH  Google Scholar 

  12. Pocchiola, M., Vegter, G.: Computing visibility graphs via pseudo-triangulations. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 248–257 (1995)

    Google Scholar 

  13. Pocchiola, M., Vegter, G.: Minimal tangent visibility graphs. Computational Geometry Theory and Applications 6, 303–314 (1996)

    MATH  MathSciNet  Google Scholar 

  14. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)

    Google Scholar 

  15. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions. IEEE Transactions on robotics and automation 8(5), 501–518 (1992)

    Article  Google Scholar 

  16. Rohnert, H.: Shortest paths in the plane with convex polygonal obstacles. Inform. Process. Lett. 23, 71–76 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rohnert, H.: Time and space efficient algorithms for shortest paths between convex polygons. Inform. Process. Lett. 27, 175–179 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Storer, J.A., Reif, J.H.: Shortest paths in the plane with polygonal obstacles. Journal of the Association for Computing Machinery 41(5), 982–1012 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Sudarshan, S., Rangan, C.P.: A fast algorithm for computing sparse visibility graphs. Algorithmica 5, 201–214 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sundar, S., Shiller, Z.: Optimal obstacle avoidance based on the Hamilton-Jacobi- Bellman equation. IEEE Transactions on robotics and automation 13(2), 305–310 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, DS., Yu, K., Cho, Y., Kim, D., Yap, C. (2004). Shortest Paths for Disc Obstacles. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics