Skip to main content

Broadcast in the Rendezvous Model

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Abstract

In many large, distributed or mobile networks, broadcast algorithms are used to update information stored at the nodes. In this paper, we propose a new model of communication based on rendezvous and analyze a multi-hop distributed algorithm to broadcast a message in a synchronous setting. In the rendezvous model, two neighbors u and v can communicate if and only if u calls v and v calls u simultaneously. Thus nodes u and v obtain a rendezvous at a meeting point. If m is the number of meeting points, the network can be modeled by a graph of n vertices and m edges. At each round, every vertex chooses a random neighbor and there is a rendezvous if an edge has been chosen by its two extremities. Rendezvous enable an exchange of information between the two entities. We get sharp lower and upper bounds on the time complexity in terms of number of rounds to broadcast: we show that, for any graph, the expected number of rounds is between log n and O(n 2). For these two bounds, we prove that there exist some graphs for which the expected number of rounds is either O(log n) or Ω(n 2). For specific topologies, additional bounds are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.: Exploring unknown environments. SIAM Journal on Computing 29(4), 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Symposium on theory of computing, pp. 82–93 (1980)

    Google Scholar 

  3. Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)

    Google Scholar 

  4. Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of the 35rd Annual Symposium on Foundations of Computer Science, pp. 75–85. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  5. Chlebus, B.: Randomized communication in radio networks. In: Handbook on Randomized Computing, Kluwer Academic, Dordrecht (to appear), http://citeseer.nj.nec.com/489613.html

  6. Comellas, F., Ozón, J., Peters, J.G.: Deterministic small-world communication networks. Information Processing Letters 76(1-2), 83–90 (2000)

    Article  MathSciNet  Google Scholar 

  7. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment i: The rectilinear case. Journal of the ACM 45(2), 215–245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1 (1990)

    Google Scholar 

  9. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.): Probabilistic Methods for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  10. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. Networks 18, 319–349 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: IEEE Symposium on Foundations of Computer Science, pp. 565–574 (2000)

    Google Scholar 

  12. Lynch, N.: A hundred impossibility proofs for distributed computing. In: Proceedings of the 8th ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–28. ACM Press, New York (1989)

    Chapter  Google Scholar 

  13. Metivier, Y., Saheb, N., Zemmari, A.: Randomized rendezvous. Trends in mathematics, pp. 183–194 (2000)

    Google Scholar 

  14. Metivier, Y., Saheb, N., Zemmari, A.: Randomized local elections. Information processing letters 82, 313–320 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press, Cambridge (1995)

    MATH  Google Scholar 

  16. Rao, N., Kareti, S., Shi, W., Iyenagar, S.: Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms (1993), http://citeseer.nj.nec.com/rao93robot.html

  17. Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duchon, P., Hanusse, N., Saheb, N., Zemmari, A. (2004). Broadcast in the Rendezvous Model. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics