Skip to main content

A Measured Collapse of the Modal μ-Calculus Alternation Hierarchy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Abstract

The μ-calculus model-checking problem has been of great interest in the context of concurrent programs. Beyond the need to use symbolic methods in order to cope with the state-explosion problem, which is acute in concurrent settings, several concurrency related problems are naturally solved by evaluation of μ-calculus formulas. The complexity of a naive algorithm for model checking a μ-calculus formula ψ is exponential in the alternation depth d of ψ. Recent studies of the μ-calculus and the related area of parity games have led to algorithms exponential only in \(\frac{d}{2}\). No symbolic version, however, is known for the improved algorithms, sacrificing the main practical attraction of the μ-calculus.

The μ-calculus can be viewed as a fragment of first-order fixpoint logic. One of the most fundamental theorems in the theory of fixpoint logic is the Collapse Theorem, which asserts that, unlike the case for the μ-calculus, the fixpoint alternation hierarchy over finite structures collapses at its first level. In this paper we show that the Collapse Theorem of fixpoint logic holds for a measured variant of the μ-calculus, which we call μ #-calculus. While μ-calculus formulas represent characteristic functions, i.e., functions from the state space to {0,1}, formulas of the μ #-calculus represent measure functions, which are functions from the state space to some measure domain. We prove a Measured-Collapse Theorem: every formula in the μ-calculus is equivalent to a least-fixpoint formula in the μ #-calculus. We show that the Measured-Collapse Theorem provides a logical recasting of the improved algorithm for μ-calculus model-checking, and describe how it can be implemented symbolically using Algebraic Decision Diagrams. Thus, we describe, for the first time, a symbolic μ-calculus model-checking algorithm whose complexity matches the one of the best known enumerative algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading (1995)

    MATH  Google Scholar 

  2. van Benthem, J.F.A.K.: Modal Logic and Classical Logic, Bibliopolis, Naples (1985)

    Google Scholar 

  3. Bhat, G., Cleaveland, R.: Efficient local model-checking for fragments of the modal μ-calculus. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, Springer, Heidelberg (1996)

    Google Scholar 

  4. Bradfield, J.C.: The modal μ-calculus alternation hierarchy is strict. TCS 195(2), 133–153 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant, R.E.: Graph-based algorithms for boolean-function manipulation. IEEE Trans. on Computers C-35(8) (1986)

    Google Scholar 

  6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. I & C 98(2), 142–170 (1992)

    MATH  MathSciNet  Google Scholar 

  7. Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.: Algebraic decision diagrams and their applications. FMSD 10(2/3), 171–206 (1997)

    Google Scholar 

  8. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdzinski, M., Mang, F.Y.C.: Interface compatibility checking for software modules. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 428–441. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. In: Perspectives in Mathematical Logic., Springer, Heidelberg (1995)

    Google Scholar 

  10. Emerson, E.A.: Modal Checking and the μ-Calculus. In: Descriptive Complexity and Finite Models, pp. 185–214. American Mathematical Society, Providence (1997)

    Google Scholar 

  11. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs using fixpoints. In: Proc. 7th ICALP, pp. 169–181 (1980)

    Google Scholar 

  12. Emerson, E.A., Jutla, C., Sistla, A.P.: On model-checking for fragments of μ-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)

    Google Scholar 

  13. Emerson, E.A., Lei, C.-L.: Efficient model checking in fragments of the propositional μ-calculus. In: Proc. 1st LICS, pp. 267–278 (1986)

    Google Scholar 

  14. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space reduction for Büchi automata. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 694–707. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Annals of Pure and Applied Logic 32, 265–280 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. I&C 173(1), 64–81 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Immerman, N.: Relational queries computable in polynomial time. I&C 68, 86–104 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Jurdzinski, M., Voge, J.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. IPL 68(3), 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  20. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Klarlund, N.: Progress measures for complementation of ω-automata with applications to temporal logic. In: Proc. 32nd FOCS, pp. 358–367 (1991)

    Google Scholar 

  22. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree automata emptiness. In: Proc. 30th STOC, pp. 224–233 (1998)

    Google Scholar 

  24. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM ToCL 2001(2), 408–429 (2001)

    Article  Google Scholar 

  25. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Leivant, D.: Inductive definitions over finite structures. I&C 89, 95–108 (1990)

    MATH  MathSciNet  Google Scholar 

  27. Long, D., Brown, A., Clarke, E., Jha, S., Marrero, W.: An improved algorithm for the evaluation of fixpoint expressions. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 338–350. Springer, Heidelberg (1994)

    Google Scholar 

  28. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)

    MATH  Google Scholar 

  29. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North-Holland, Amsterdam (1974)

    MATH  Google Scholar 

  30. Klarlund, N., Schneider, F.B.: Proving nondeterministically specified safety properties using progress measures. I&C 107(1), 151–170 (1993)

    MATH  MathSciNet  Google Scholar 

  31. Park, D.: Finiteness is μ-ineffable. TCS 3, 173–181 (1976)

    Article  Google Scholar 

  32. Pratt, V.R.: A decidable μ-calculus: preliminary report. In: 22nd FOCS, pp. 421–427 (1981)

    Google Scholar 

  33. Seidl, H.: Fast and simple nested fixpoints. IPL 59(6), 303–308 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bustan, D., Kupferman, O., Vardi, M.Y. (2004). A Measured Collapse of the Modal μ-Calculus Alternation Hierarchy. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics