On Indexing Sliding Windows over Online Data Streams

  • Lukasz Golab
  • Shaveen Garg
  • M. Tamer Özsu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2992)


We consider indexing sliding windows in main memory over on-line data streams. Our proposed data structures and query semantics are based on a division of the sliding window into sub-windows. By classifying windowed operators according to their method of execution, we motivate the need for two types of windowed indices: those which provide a list of attribute values and their counts for answering set-valued queries, and those which provide direct access to tuples for answering attribute-valued queries. We propose and evaluate indices for both of these cases and show that our techniques are more efficient than executing windowed queries without an index.


Query Processing Continuous Query Query Semantic Window Query Basic Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bobineau, C., Bouganim, L., Pucheral, P., Valduriez, P.: PicoDMBS: Scaling down database techniques for the smartcard. In: VLDB 2000, pp. 11–20 (2000)Google Scholar
  2. 2.
    Cohen, E., Strauss, M.: Maintaining time-decaying stream aggregates. In: PODS 2003, pp. 223–233 (2003)Google Scholar
  3. 3.
    Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams. In: SIGMOD 2003, pp. 40–51 (2003)Google Scholar
  4. 4.
    Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. In: SODA 2002, pp. 635–644 (2002)Google Scholar
  5. 5.
    DeWitt, D.J., et al.: Implementation techniques for main memory database systems. In: SIGMOD 1984, pp. 1–8 (1984)Google Scholar
  6. 6.
    Gärtner, A., Kemper, A., Kossmann, D., Zeller, B.: Efficient bulk deletes in relational databases. In: ICDE 2001, pp. 183–192 (2001)Google Scholar
  7. 7.
    Golab, L., Garg, S., Özsu, M.T.: On indexing sliding windows over on-line data streams. University of Waterloo Technical Report CS-2003-29, Available at
  8. 8.
    Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Record 32(2), 5–14 (2003)CrossRefGoogle Scholar
  9. 9.
    Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries over data streams. In: VLDB 2003, pp. 500–511 (2003)Google Scholar
  10. 10.
    Horowitz, E., Sahni, S.: Fundamentals of Data Structures. Computer Science Press, Potomac (1987)Google Scholar
  11. 11.
    Kang, J., Naughton, J., Viglas, S.: Evaluating window joins over unbounded streams. In: ICDE 2003 (2003)Google Scholar
  12. 12.
    Lehman, T.J., Carey, M.J.: Query processing in main memory database management systems. In: SIGMOD 1986, pp. 239–250 (1986)Google Scholar
  13. 13.
    Qiao, L., Agrawal, D., El Abbadi, A.: Supporting sliding window queries for continuous data streams. In: SSDBM 2003 (2003)Google Scholar
  14. 14.
    Shivakumar, N., García-Molina, H.: Wave-indices: indexing evolving databases. In: SIGMOD 1997, pp. 381–392 (1997)Google Scholar
  15. 15.
    Srivastava, J., Ramamoorthy, C.V.: Efficient algorithms for maintenance of large database. In: ICDE 1988, pp. 402–408 (1988)Google Scholar
  16. 16.
    Zhu, Y., Shasha, D.: StatStream: Statistical monitoring of thousands of data streams in real time. In: VLDB 2002, pp. 358–369 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lukasz Golab
    • 1
  • Shaveen Garg
    • 2
  • M. Tamer Özsu
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Department of Computer Science and EngineeringIIT BombayIndia

Personalised recommendations