Efficient Distributed Skylining for Web Information Systems

  • Wolf-Tilo Balke
  • Ulrich Güntzer
  • Jason Xin Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2992)


Though skyline queries already have claimed their place in retrieval over central databases, their application in Web information systems up to now was impossible due to the distributed aspect of retrieval over Web sources. But due to the amount, variety and volatile nature of information accessible over the Internet extended query capabilities are crucial. We show how to efficiently perform distributed skyline queries and thus essentially extend the expressiveness of querying today’s Web information systems. Together with our innovative retrieval algorithm we also present useful heuristics to further speed up the retrieval in most practical cases paving the road towards meeting even the real-time challenges of on-line information services. We discuss performance evaluations and point to open problems in the concept and application of skylining in modern information systems. For the curse of dimensionality, an intrinsic problem in skyline queries, we propose a novel sampling scheme that allows to get an early impression of the skyline for subsequent query refinement.


Random Access Database Size Skyline Query Database Object Score Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balke, W.-T., Güntzer, U., Kießling, W.: On Real-time Top k Querying for Mobile Services. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Balke, W.-T., Kießling, W., Unbehend, C.: A situation-aware mobile traffic information prototype. In: Hawaii Int. Conf. on System Sciences (HICSS-36), Big Island, Hawaii, USA (2003)Google Scholar
  3. 3.
    Balling, R.: The Maximin Fitness Function: Multi-objective City and Regional Planning. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Proc. of the Int. Conf. on Data Engineering (ICDE 2001), Heidelberg, Germany (2001)Google Scholar
  5. 5.
    Bruno, N., Gravano, L., Marian, A.: Evaluating Top-k Queries over Web-Accessible Databases. In: Proc. of the Int. Conf. on Data Engineering (ICDE 2002), San Jose, USA (2002)Google Scholar
  6. 6.
    Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, p. 34. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: ACM Symp. on Principles of Database Systems (PODS 2001), Santa Barbara, USA (2001)Google Scholar
  8. 8.
    Fishburn, P.: Preference Structures and their Numerical Representations. Theoretical Computer Science 217, 359–383 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing Multi-Feature Queries for Image Databases. In: Proc. of the Int. Conf. on Very Large Databases (VLDB 2000), Cairo, Egypt (2000)Google Scholar
  10. 10.
    Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley & Sons, Chichester (1976)Google Scholar
  11. 11.
    Kießling, W.: Foundations of Preferences in Database Systems. In: Proc. of the Int. Conf. on Very Large Databases (VLDB 2002), Hong Kong, China (2002)Google Scholar
  12. 12.
    Kießling, W., Köstler, G.: Preference SQL - Design, Implementation, Experiences. In: Proc. of the Int. Conf. on Very Large Databases (VLDB 2002), Hong Kong, China (2002)Google Scholar
  13. 13.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for Skyline Queries. In: Conf. on Very Large Data Bases (VLDB 2002), Hong Kong, China (2002)Google Scholar
  14. 14.
    Kung, H., Luccio, F., Preparata, F.: On Finding the Maxima of a Set of Vectors. Journal of the ACM 22(4). ACM (1975)Google Scholar
  15. 15.
    Lacroix, M., Lavency, P.: Preferences: Putting more Knowledge into Queries. In: Proc. of the Int. Conf. on Very Large Databases (VLDB 1987), Brighton, UK (1987)Google Scholar
  16. 16.
    Map-Quest Roadtrip Planner (2003),
  17. 17.
    McGeachie, M., Doyle, J.: Efficient Utility Functions for Ceteris Paribus Preferences. In: Conf. on AI and Innovative Applications of AI (AAAI/IAAI 2002), Edmonton, Canada (2002)Google Scholar
  18. 18.
    NTT DoCoMo home page (2003),
  19. 19.
    Ortega, M., Rui, Y., Chakrabarti, K., et al.: Supporting ranked boolean similarity queries in MARS. IEEE Trans. on Knowledge and Data Engineering (TKDE) 10(6) (1998)Google Scholar
  20. 20.
    Papadias, D., Tao, Y., Fu, G., et al.: An Optimal and Progressive Algorithm for Skyline Queries. In: Proc. of the Int. ACM SIGMOD Conf (SIGMOD 2003), San Diego, USA (2003)Google Scholar
  21. 21.
    Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: Proc. of Conf. on Very Large Data Bases (VLDB 2001), Rome, Italy (2001)Google Scholar
  22. 22.
    Wagner, M., Balke, W.-T., et al.: A Roadmap to Advanced Personalization of Mobile Services. In: Proc. of the. DOA/ODBASE/CoopIS (Industry Program), Irvine, USA (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Wolf-Tilo Balke
    • 1
  • Ulrich Güntzer
    • 2
  • Jason Xin Zheng
    • 1
  1. 1.Computer Science DepartmentUniversity of CaliforniaBerkeleyUSA
  2. 2.Insitut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations