Skip to main content

Result Verification for Computational Problems in Geodesy

  • Conference paper
Book cover Numerical Software with Result Verification

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2991))

  • 439 Accesses

Abstract

The subject of the paper is to present verified methods to solve three important geodetic problems: The Direct and Inverse Problem of geodetic surveying and the three-dimensional resection problem, often also designated as the main problem of Photogrammetry.

The Direct Problem reads as follows: Given a point p on a rotational ellipsoid E, a direction tangential to E and a distance, determine the point q which is reached after “walking” the given distance along a geodesic on E, starting at p in the given direction, and compute the direction of the geodesic in q.

In the Inverse Problem there are given two points p,q on E, and one has to compute the length of a geodesic on E connecting p and q as well as its directions in p and q.

It is shown that the Direct Problem can be treated as an ordinary initial value problem with verified solvers like AWA.

The inverse problem is much more complicated because no characteristic quantity of the geodesic is known. In fact it is an ordinary open boundary value problem and the question whether it is uniquely sovable must be treated. It is shown how to compute an enclosure of the direction of the geodesic in one point. By the aid of this enclosure the problem can be solved by a verified shooting technique using again solvers like AWA.

The three-dimensional resection problem can be reduced to the problem to find the set S of all real positive s 1, s 2, s 3 satisfying the equations

\(s^2_2 + s^2_3 - 2_{{s_2}{s_2}{c_1}} = a^2_1\)

\(s^2_3 + s^2_1 - 2_{{s_3}{s_1}{c_2}} = a^2_2\)

\(s^2_1 + s^2_2 - 2_{{s_1}{s_2}{c_3}} = a^2_3\)

where c i , a i , i=1,2,3, are real parameters restricted by the inequalities -1 < c i < 1, i=1,2,3, \(1 - c^2_1 - c^2_2 - c^2_3 + 2_{{c_1}{c_2}{c_3}} \geq 0\), a i >0, i=1,2,3, a 1+a 2>a 3, a 2+a 3>a 1, a 3+a 1>a 2.

There are discussed three approaches for constructing algorithms for computing narrow inclusions of S. In the first one the fact is used that an initial box containing S can be easily derived. Consequently standard modules like GlobSol or nlss can be applied to achieve the goal.

The idea of the second approach is to construct verifying versions of algorithms for computing S wich are used in practice. However, it turns out that there are instabilities in the resulting methods which are not present in the methods resulting from the first approach.

The aim of the third approach is to derive sufficiently narrow inclusions of S from sufficiently narrow inclusions of all zeros of at most four simple functions of one variable. At the moment experiences with several practical and artificial examples indicate that the third approach is best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DoCarmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey (1976)

    Google Scholar 

  2. Blaschke, W., Leichtweiß, K.: Elementare Differentialgeometrie. Springer, Berlin (1973)

    MATH  Google Scholar 

  3. Alefeld, G., Herzberger, H.: Introduction to interval computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  4. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, C.: PASCAL - XSC - Sprachbeschreibung mit Beispielen. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  5. Walter, W.: Gewöhnliche Differentialgleichungen. Springer, Berlin (1976)

    MATH  Google Scholar 

  6. Borovac, S.: Zur Theorie und verifizierten Lösung der ersten und zweiten geodätischen Hauptaufgabe auf dem Rotationsellipsoid, Diplomarbeit, Universität Wuppertal (1998)

    Google Scholar 

  7. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen, Dissertation, Universität Karlsruhe (1988)

    Google Scholar 

  8. Nedialkov, N.S., Jackson, K.R.: The design and implementation of an objectoriented validated ODE solver, Technical Report, Department of Computer Science, University of Toronto (2002)

    Google Scholar 

  9. Auer, E.: Ein verifizierender Anfangswertproblemlöser in C++ zur Integration in MOBILE, Master’s thesis, Universität Duisburg (2002)

    Google Scholar 

  10. Berz, M., Makino, K.: Verfified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Computing 4, 361–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Stauning, O.: Automatic validation of numerical solutions, PhD thesis, Technical University of Denmark, Lyngby (1997)

    Google Scholar 

  12. Großmann, W.: Geodätische Rechnungen und Abbildungen in der Landvermessung, Konrad Wittner Verlag, Stuttgart (1976)

    Google Scholar 

  13. Torge, W.: Geodesy. de Gruyter, Berlin (1980)

    Google Scholar 

  14. Klotz, J.: Eine analytische Lösung kanonischer Gleichungen der geodätischen Linie zur Transformation ellipsoidischer Fächenkoordinaten, Deutsche Geodätische Kommission, Reihe C, Nr. 385, München (1991)

    Google Scholar 

  15. Bodemüller, H.: Die geodätischen Linien des Rotationsellipsoides und die Lösung der geodätischen Hauptaufgaben für große Strecken unter besonderer Berücksichtigung der Bessel-Helmertschen Lösungsmethode, Deutsche Geodätische Kommission, Reihe B, Nr. 13, München (1954)

    Google Scholar 

  16. Grafarend, E.W., Lohse, P., Schaffrin, B.: Dreidimensionaler Rückwärtsschnitt Teil I: Die projektiven Gleichungen, Zeitschrift für Vermessungswesen (ZfV) 2, 61–67 (1989) Teil II: Dreistufige Lösung der algebraischen Gleichungen – Strecken –, ZfV 3, 127–137 (1989) Teil III: Dreistufige Lösung der algebraischen Gleichungen – Orientierungsparameter, Koordinaten –, ZfV 4, 172–175 (1989) Teil IV: Numerik, Beispiele, ZfV 5, 225–234 (1989) Teil V: Alternative numerische Lösungen, ZfV 6, 278–287 (1989)

    Google Scholar 

  17. Grunert, J.A.: Das Pothenotsche Problem, in erweiterter Gestalt; nebst Bemerkungen über seine Anwendungen in der Geodäsie, Grunerts Archiv für Mathematik und Physik I, pp. 238–248 (1841)

    Google Scholar 

  18. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I. Springer, Berlin (1993)

    MATH  Google Scholar 

  19. Heindl, G.: Best possible componentwise parameter inclusions computable from a priori estimates, measurements and bounds for the measurement errors. Journal of Computational and Applied Mathematics 152, 175–185 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lagrange, J.L.: Leçons élémentaires sur les mathématiques données à l’École Normale en 1795. In: Serret, M.J.A. (ed.) Oeuvres de Lagrange, Tome 7, Paris. Section IV, pp. 183–288 (1877)

    Google Scholar 

  21. Lamé, M.G.: Examen des différentes méthodes employées pour résoudre les problèmes de géometrie, pp. 70–72, Paris (1818)

    Google Scholar 

  22. Stephan, A.: Über Strategien zur Verbesserung des Pascal-XSC-Moduls GOp zur verifizierten globalen Optimierung, Diplomarbeit, Universität Wuppertal (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borovac, S., Heindl, G. (2004). Result Verification for Computational Problems in Geodesy. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds) Numerical Software with Result Verification. Lecture Notes in Computer Science, vol 2991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24738-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24738-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21260-7

  • Online ISBN: 978-3-540-24738-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics