Skip to main content

Inferring Piecewise Ancestral History from Haploid Sequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2983))

Abstract

There has been considerable recent interest in the use of haplotype structure to aid in the design and analysis of case-control association studies searching for genetic predictors of human disease. The use of haplotype structure is based on the premise that genetic variations that are physically close on the genome will often be predictive of one another due to their frequent descent intact through recent evolution. Understanding these correlations between sites should make it possible to minimize the amount of redundant information gathered through assays or examined in association tests, improving the power and reducing the cost of the studies. In this work, we evaluate the potential value of haplotype structure in this context by applying it to two key sub-problems: inferring hidden polymorphic sites in partial haploid sequences and choosing subsets of variants that optimally capture the information content of the full set of sequences. We develop methods for these approaches based on a prior method we developed for predicting piece-wise shared ancestry of haploid sequences. We apply these methods to a case study of two genetic regions with very different levels of sequence diversity. We conclude that haplotype correlations do have considerable potential for these problems, but that the degree to which they are useful will be strongly dependent on the population sizes available and the specifics of the genetic regions examined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occuring in the statistical analysis of probability functions of Markov chains. Annals Math. Stat. 41, 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cardon, L.R., Bell, J.I.: Association study designs for complex diseases. Nature Reviews Genetics 2, 91–99 (2001)

    Article  Google Scholar 

  3. Chapman, N.H., Thompson, E.A.: The effect of population history on the lengths of ancestral chromosome segments. Genetics 162, 449–458 (2002)

    Google Scholar 

  4. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J.: High-resolution haplotype structure in the human genome. Nat. Genet. 29, 229–232 (2001)

    Article  Google Scholar 

  5. Fullerton, S.M., Clark, A.G., Weiss, K.M., Nickerson, D.A., Taylor, S.L., Stengaard, J.H., Salomaa, V., Vartiainen, E., Perola, M., Boerwinkle, E., Sing, C.F.: Apolipoprotein E variation at the sequence haplotype level: implications for the origins and maintenance of a major human polymorphism. Am. J. Hum. Gen. 67, 881–900 (2000)

    Article  Google Scholar 

  6. Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E.S., Daly, M.J., Altschuler, D.: The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)

    Article  Google Scholar 

  7. Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequence with recombination. Journal of Computational Biology 3/4, 479–502 (1996)

    Article  Google Scholar 

  8. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Google Scholar 

  9. Jeffreys, A.J., Kauppi, L., Neumann, R.: Intensely punctute meiotic recombination in the class II region of the major histocompatibility complex. Nat. Genet. 29, 217–222 (2001)

    Article  Google Scholar 

  10. Johnson, G.C., Esposito, L., Barret, B.J., Smith, A.N., Heward, J., Di Genova, G., Ueda, H., Cordell, H.J., Eaves, I.A., Dudbrigde, F., Twells, R.C., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S.C., Clayton, D.G., Todd, J.A.: Haplotype tagging for the identification of common disease genes. Nat. Genet. 29, 233–237 (2001)

    Article  Google Scholar 

  11. Kececioglu, J., Gusfield, D.: Reconstructing a history of recombinations from a set of sequences. In: Proceedings of the Fifth ACM-SIAM Symposium on Discrete Algorithms, pp. 471–480 (1994)

    Google Scholar 

  12. Liu, J.S., Sabatii, C., Teng, J., Keats, B.J.B., Risch, N.: Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Res. 11, 1716–1724 (2001)

    Article  Google Scholar 

  13. Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, E.S., Hirschhorn, J.N.: Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33, 177–182 (2003)

    Article  Google Scholar 

  14. McPeek, M.S., Strahs, A.: Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale genetic mapping. Am. J. Hum. Gen. 65, 858–875 (1999)

    Article  Google Scholar 

  15. Morris, A.P., Whittaker, J.C., Balding, D.J.: Bayesian fine-scale mapping of disease loci, by hidden Markov models. Am. J. Hum. Gen. 67, 155–169 (2000)

    Article  Google Scholar 

  16. Nickerson, D.A., Taylor, S.L., Fullerton, S.M., Weiss, K.M., Clark, A.G., Stengaard, J.H., Salomaa, V., Boerwinkle, E., Sing, C.F.: Sequence diversity and large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res. 10, 1532–1545 (2000)

    Article  Google Scholar 

  17. Nickerson, D.A., Taylor, S.L., Weiss, K.M., Clark, A.G., Hutchinson, R.G., Stengaard, J.H., Salomaa, V., Vartiainen, E., Boerwinkle, E., Sing, C.F.: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat. Genet. 19, 233–240 (1998)

    Article  Google Scholar 

  18. Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R., Lee, D.H., Marjoribanks, C., McDonough, D.P., Nguyen, B.T., Norris, M.C., Sheehan, J.B., Shen, N., Stern, D., Stokowski, R.P., Thomas, D.J., Trulson, M.O., Vyas, K.R., Frazer, K.A., Fodor, S.P., Cox, D.R.: Blocks of limited haplotype diversity revealed by high resolution scanning of human chromosome 21. Science 294, 1719–1722 (2001)

    Article  Google Scholar 

  19. Risch, N.J., Merikangas, K.R.: The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996)

    Article  Google Scholar 

  20. Schwartz, R., Clark, A.G., Istrail, S.: Methods for inferring block-wise ancestral history from haploid sequences: The haplotype coloring problem. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 44–59. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Service, S.K., Temple Lang, D.W., Freimer, N.B., Sandkuijl, L.A.: Linkage disequilibrium mapping of disease genes by reconstruction of ancestral haplotypes in founder populations. Am. J. Hum. Gen. 64, 1728–1738 (1999)

    Article  Google Scholar 

  22. Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989 (2001)

    Article  Google Scholar 

  23. Ukkonen, E.: Finding founder sequences from a set of recombinants. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 277–286. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Venter, G., Adams, M.A., Myers, E.W., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001)

    Article  Google Scholar 

  25. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8, 69–78 (2002)

    Article  Google Scholar 

  26. Wiuf, C., Hein, J.: On the number of ancestors to a DNA sequence. Genetics 147, 1459–1468 (1997)

    Google Scholar 

  27. Wiuf, C., Hein, J.: The ancestry of a sample of sequences subject to recombination. Genetics 151, 1217–1228 (1999)

    Google Scholar 

  28. Wu, S., Gu, X.: A greedy algorithm for optimal recombination. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 86–90. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Zhang, K., Calabrese, P., Nordborg, M., Sun, F.: Haplotype block structure and its applications to association studies: Power and study designs. Am. J. Hum. Gen. 71, 1386–1394 (2002)

    Article  Google Scholar 

  30. Zhang, K., Deng, M., Chen, T., Waterman, M.S., Sun, F.: A dynamic programming algorithm for haplotype block partitioning. Proc. Natl. Acad. Sci. USA 99, 7335–7339 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwartz, R., Clark, A.G., Istrail, S. (2004). Inferring Piecewise Ancestral History from Haploid Sequences. In: Istrail, S., Waterman, M., Clark, A. (eds) Computational Methods for SNPs and Haplotype Inference. RSNPsH 2002. Lecture Notes in Computer Science(), vol 2983. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24719-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24719-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21249-2

  • Online ISBN: 978-3-540-24719-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics