Skip to main content

Co-Evolutionist Stochastic Dynamics: Emergence of Power Laws

  • Chapter
Cognitive Economics
  • 380 Accesses

Abstract

We propose a stochastic generalization of the Lotka-Volterra-Eigen-Schuster systems. In the generalized system, the set of dynamical variables is divided into several subsets, such that the variables within each subset interact with each other more strongly than with those in other subsets. It is shown that the size distribution of the dynamical variables within each subset approach a power-law form, while the exponents that characterize these distributions are different in different subsets. The exponent for each subset is found to depend only on the ratio between the stochastic term and the deterministic additive term. The model can be applied in the context of international trade, where the dynamical variables represent the revenues of firms or income/wealth of individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Malthus T. R. (1798) An essay on the principle of population. J Johnsonin St Paul’s Churchyard, London 1798, reprinted by Macmillan et Co 1894

    Google Scholar 

  2. Verhuulst P. F. (1838) Notice sur la Loi que la Population Suit dans son Accroissement. Correspondence Mathematique et Physique publie par A Quetelet 10. English translation in D. Smith and N. Keyfiz Mathematical Demography Springer NY 1977, 333–33

    Google Scholar 

  3. Rogers, E. M. (1995) The Diffusion of Innovations, 4th, New York, Free Press

    Google Scholar 

  4. Bass, F. M. (1969) A New Product Growth Model for Consumer Durables. Management Science 15, 215

    Article  Google Scholar 

  5. Coleman, J. S. (1964) Introduction to Mathematical Sociology. The Free Press of Glencoe, Collier-Macmillan, London

    Google Scholar 

  6. Ross, R. (1911) The Prevention of Malaria. John Murray, London

    Google Scholar 

  7. Lotka A. J. (1911) Contribution to the Analysis of Malaria Epidemiology. Supplement to the Amer J Hygiene parts I 1–37, II 38–54 and III 55–95

    Google Scholar 

  8. Lotka, A.J. (1912) Quantitative studies in epidemiology. Nature, Feb. 1912, p. 497.

    Google Scholar 

  9. Lotka, A.J. (1920) Updated oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595

    Google Scholar 

  10. Lotka A.J. (1925) Elements of Physical Biology. Williams Si Wilkins, Baltimore, MD, USA

    Google Scholar 

  11. Volterra, V. (1901) Sui tentativi di applicazione della matematiche alle scienze biologicha e sociale Giornale degli Economisti 23, 436–458

    Google Scholar 

  12. Eigen, M. (1971) Naturweissenschaften 58, 465

    Article  Google Scholar 

  13. Eigen, M. and Schuster, P. (1977) Naturweissenschaften 64, 541

    Article  Google Scholar 

  14. Schuster, P. (1986) Physica D 22, 100

    Article  Google Scholar 

  15. Ebeling, W. and Feistel R. (1982) Physik der Selbstorganisation und Evolution Akademie-Verlag, Berlin

    Google Scholar 

  16. Jimenez, M. A., Montano, and Ebeling, W. Collective Phenomena 3, 107–114

    Google Scholar 

  17. Mikhailov, A. S. (1990) Foundations of synergetics. I. Distributed Active Systems. Springer-Verlag, Springer series in synergetics. v. 51 Springer-Verlag, Berlin

    Google Scholar 

  18. Mikhailov, A. S. (1991) Foundations of synergetics. II. Complex patterns. Springer series in synergetics. v. 52, Springer-Verlag, Berlin

    Google Scholar 

  19. Montroll, E. W. Badger, W. W. (1984) Introduction to Quantitative aspects of Social Phenomena. North Holland, Amsterdam

    Google Scholar 

  20. Aoki, M. (1998) New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities as Field Effects, Cambridge University Press

    Google Scholar 

  21. Solomon, S. (1998) Stochastic Lotka-Volterra Systems of Competing Auto-catalytic Agents Lead Generically to Truncated Pareto Power Wealth Distribution, Truncated Levy Distribution of Market Returns, Clustered Volatility, Booms and Crashes. in Decision Technologies for Computational Finance, edited by Refenes, A.-P., Burgess, A. N. and Moody, J. E. Kluwer Academic Publishers. http://www.lanl.gov/abs/cond-mat/9803367

    Google Scholar 

  22. Schumpeter, J. (1934) The Theory of Economic Development. Harvard Univsity Press, Cambridge

    Google Scholar 

  23. Jones, B. L., Enns, R. H. and Ragenkar, S. S. (1976) Bull Math Biol 38, 12–28

    Google Scholar 

  24. Thompson, C. J. and McBride, J. L. Math Biosc 21, 127–142

    Google Scholar 

  25. Scudo, F. M. and Ziegler J. R. (1978) The Golden Age of Theoretical Ecology: 1923–1940 Lecture Notes in Biomathematics Managing ed. Levin, S., Springer-Verlag New York

    Google Scholar 

  26. Kolmogoroff, A. (1936) Sulla teoria di Volterra dell lotta per lesistenza Giorn Instituto Ital. Attuari 7, 74–80

    Google Scholar 

  27. Peshel, M. and Mende, W. (1986) The Predator-Prey Model, Do We Live in a Volterra World? Springer Verlag, Wien, New York

    Google Scholar 

  28. Hofbauer, J. and Sigmund, K. (1988) The Theory of Evolution and Dynamical Systems, London Mathematical Society Student Texts 7, Cambridge University Press

    Google Scholar 

  29. Smith, J. M. (1974) Models in Ecology. Cambridge University Press

    Google Scholar 

  30. May, R. M. (1972) Will a Large Complex System be Stable? Nature 238 413414

    Google Scholar 

  31. Bailey, N. T. J. (1980) Spatial Models in the Epidemiology of Infectious Diseases., p. 233–260 in Biological Growth and Spread. eds. Jager, W., Rost, H. and Tautu, P. Springer-Verlag, Lecture Notes in Biomathematics, 38, Heidelberg

    Google Scholar 

  32. Biham, O., Malcai, O., Levy M. and Solomon, S. (1998) Generic Emergence of Power Law Distributions and Lévy-Stable Intermittent Fluctuations in Discrete Logistic Systems. Phys. Rev. E 58, 1352

    Google Scholar 

  33. Solomon, S. (2000) Generalized Lotka Volterra (GLU) Models in Applications of Simulation to Social Sciences. eds. Ballot, G. and Weisbuch, G., Hermes Science Publications.http://www.lanl.gov/abs/cond-mat/9901250

  34. Pareto, V. (1897) Coursed’Economique Politique, Vol 2, Macmillan, Paris

    Google Scholar 

  35. Anderson P. W. (1995) in The Economy as an Evolving Complex System II. eds. Arthur, W. B., Durlauf, S. N. and Lane, D. A. Redwood City, Calif., Addison-Wesley

    Google Scholar 

  36. Zipf, G. K. (1949) Human Behavior and the Principle of Least Effort. Addison-Wesley

    Google Scholar 

  37. Levin, S. A. ed. (1978) Populations and Communities MAA Studies in Mathematics Vol 16 Studies in Mathematical Biology Part II, Mathematical Association of America

    Google Scholar 

  38. Malcai, O., Biham, O. and Solomon, S. (1999) Power-Law Distributions and Lévy-Stable Intermittent Fluctuations in Stochastic Systems of Many Autocatalytic Elements. Phys. Rev. E 60, 1299.http://www.lanl.gov/abs/cond-mat/9907320

  39. S. Solomon et al.

    Google Scholar 

  40. Solomon, S. and Levy, M. (2000) Market Ecology, Pareto Wealth Distribution and Leptokurtic Returns in Microscopic Simulation of the LLS Stock Market Model in Patterns - Trends - Predictions ed. Wille, L. to appear.http://www.lanl.gov/abs/cond-mat/0005416

  41. Shnerb, N. M., Louzoun Y., Bettelheim, E. and Solomon, S. (2000) The Importance of Being Discrete: Life Always Wins on the Surface Proc. Natl. Acad. Sci. USA, Vol. 97, Issue 19, 10322–10324.http://www.lanl.gov/abs/cond-mat/9912005

  42. Blank, A. and Solomon, S. Power Laws in Cities Population, Financial Markets and Internet Sites (scaling in systems with a variable number of components) Physica A 287 279–288.http://www.lanl.gov/abs/cond-mat/0003240

  43. Huang Z. F. and Solomon, S. (2001) Finite Market Size as a Source of Extreme Wealth Inequality and Market Instability, Physica A 294, 503–513.http://www.lanl.gov/abs/cond-mat/0103170

  44. Solomon, S. and Richmond, P. (2001) Power-Laws of Wealth, Market Order Volumes and Market Returns. Physica A. 299, 188

    Article  Google Scholar 

  45. Richmond, (2001) P. Power Law Distributions and Dynamic Behaviour of Stock Markets. Eur. J. Phys. B 20, 523

    Google Scholar 

  46. Malcai, O., Biham, O., Richmond P. and Solomon, S. (2002) Phys. Rev. E 66, 03 1102

    Google Scholar 

    Google Scholar 

  47. Turelli, M. (1977) Random Environments and Stochastic Calculus Theor. Pop. Biol. 12 140–178

    Article  Google Scholar 

  48. Ricciardi, L. M. (1986) Stochastic Population Theory: Birth and Death Processes 155–190, in Biomathematics Vol 17 Mathematical Ecology eds. Hallam, T. G and Levin, S. A., Springer Verlag Berl in Heidelberg

    Google Scholar 

  49. Svirezhev, Y. M and Logofet, D. O. (1983) Stability of Mathematical Communities. English Translation, Mir Publishers, Moscow

    Google Scholar 

  50. Kesten, H. (1980) Random Processes in Random Environments 82–92, in Biological Growth and Spread, eds. Jager, W. Rost, H. and Tautu, P. Springer Verlag, Lecture Notes in Biomathematics 38, Heidelberg

    Google Scholar 

  51. Ogura, Y. and Kesten, H. (1981) Recurrence Properties of Lotka-Volterra Models with Random Fluctuations. J. Math. Soc. Japan 32 335

    Google Scholar 

  52. Bouchaud J.P. and Mezard M. (2000) Wealth condensation in a simple model of economy. Physica A 282, 536–545

    Google Scholar 

  53. van Kampen, N.G. (1981) Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam

    Google Scholar 

  54. Horsthemke, W. and Lefever, R. (1984) Noise Induced Transitions Theory and Applications in Physics Chemistry and Biology. Springer-Verlag, Berl in Heidelberg

    Google Scholar 

  55. Ito, K. (1951) On a Formula Concerning Stochastic Differentials Nagoya Math. J. 3, 55

    Google Scholar 

  56. Stratonovich, R. L. (1966) A New Representation for Stochastic Integrals and Equations, SIAM J Control 4, 362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solomon, S., Richmond, P., Biham, O., Malcai, O. (2004). Co-Evolutionist Stochastic Dynamics: Emergence of Power Laws. In: Bourgine, P., Nadal, JP. (eds) Cognitive Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24708-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24708-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07336-6

  • Online ISBN: 978-3-540-24708-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics