Fingerprint Matching Based on Linking Information Structure of Minutiae

  • JeongHee Cha
  • HyoJong Jang
  • GyeYoung Kim
  • HyungIl Choi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3043)


In this paper, we propose a new fingerprint recognition technique by using minutiae linking information. We introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection with low cost in comparison stage of two fingerprints. This algorithm is invariant to translation and rotation of fingerprint. The matching algorithm was tested on 500 images from the semiconductor chip style scanner. Experimental result revealed the false acceptance rate is decreased and genuine acceptance rate is increased than existing method.


Dynamic Time Warping False Acceptance Rate Minutia Extraction Fingerprint Recognition Fingerprint Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K., Hong, L., Pankanti, S., Bolle, R.: An identity authentication system using fingerprints. In: Proc, IEEE, September 1997, vol. 85, pp. 1365–1388 (1997)Google Scholar
  2. 2.
    Isenor, D.K., Zaky, S.G.: Fingerprint Identification Using Graph Matching. Pattern Recognition 19(2), 113–122 (1986)CrossRefGoogle Scholar
  3. 3.
    Application Briefs: Computer Graphics in the Derective Business. IEEE Computer and Applications 5(4), 14–17 (April 1985)Google Scholar
  4. 4.
    YAMATO, K., HATA, Y., ASADA, T.: Laplacian Enhancement Techniques for Fingerprint Features. In: Asian Conference on Computer Vision, Osaka, Japan, November 23-25, pp. 75–78 (1993)Google Scholar
  5. 5.
    Zhang, S., Fu, K.S.: A Thinning Algorithm for Discrete Binary Images. In: Proceedings of the International Conference on Computers and Applications, Beijing, China, pp. 879–886 (1984)Google Scholar
  6. 6.
    Kovcs-Vajna, Z.M., Member, S.: A Fingerprint Verification System Based on Triangular Matching and Dynamic Time Warping. IEEE Trans. Pattern Analysis and Machine Intelligence 22(11), 1266–1276 (2000)CrossRefGoogle Scholar
  7. 7.
    Kim, H.-C., Shim, J.-C.: Fingerprint Recognition using Connected Ridge Information between Minutiae on the Same Ridge. Korea Information Science Society 28(10), 764–772 (2001)Google Scholar
  8. 8.
    Lee, D., Lee, S., Kim, J.: Fingerprint Minutiae Matching Using Local Alignment. The Institute of Electronics Engineers of Korea Summer Conference 24(1), 195–198 (2001)Google Scholar
  9. 9.
    Maio, D., Member, S., IEEE, Maltoni, D., Cappelli, F., Wayman, J.L., Jain, A.K.: FVC2000: Fingerprint Verification Competition. IEEE Trans. Pattern Analysis and Machine Intelligence 24(3) (March 2002)Google Scholar
  10. 10.
    Driscoll, E.C., Martin, C.O., Ruby, K., Russel, J.J., Watson, J.G.: Method and apparatus for verifying identity using image correlation.U. S. Patent 5067162 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • JeongHee Cha
    • 1
  • HyoJong Jang
    • 1
  • GyeYoung Kim
    • 1
  • HyungIl Choi
    • 1
  1. 1.School of Computer ScienceSoongsil UniversitySeoulKorea

Personalised recommendations