Advertisement

Tools for Self-Organizing Applications Engineering

  • Carole Bernon
  • Valérie Camps
  • Marie-Pierre Gleizes
  • Gauthier Picard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2977)

Abstract

Nowadays, the applications to be realized are more often distributed, complex and open, e.g., applications on the Internet: information search, brokerage, e-commerce, e-business... Therefore, designers cannot implement a global control and list all situations such systems have to be faced with. ADELFE1 methodology was proposed to develop this kind of software. It is based on the AMAS theory (Adaptive Multi-Agent Systems) and the emergence concept. This theory gives local agent design criteria so as to enable the emergence of an organization within the system and thus, of the global function of the system. This paper focuses on three tools of the methodology associated with the process and the UML/AUML notations. The first tool is based on the commercial software OpenTool, enriched to take into account adaptive multi-agent system development. The second tool is a support decision tool to help designers to decide if the AMAS theory is relevant for the current system to design. The last tool is an interactive tool which supports the process and helps designers to follow the process and to execute associated tasks. The use of each tool is illustrated by ETTO (Emergent TimeTabling Organization) application.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: a Methodology for Adaptive Multi-Agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling. European Journal of Operational Research - EJOR 140/2, 266–280 (2002)CrossRefGoogle Scholar
  3. 3.
    Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-driven Development Methodology. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, p. 108. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cossentino, M.: Different Perspectives in Designing Multi-Agent System. In: AgeS 2002 (Agent Technology and Software Engineering) Workshop at NodE 2002, Erfurt, Germany (October 2002)Google Scholar
  5. 5.
    Desfray, P.: UML Profiles Versus Metamodel Extensions: An Ongoing Debate. In: OMG’s UML Workshops: UML in the .com Enterprise: Modeling CORBA, Components, XML/XMI and Metadata Workshop (November 2000)Google Scholar
  6. 6.
    DeLoach, S.A., Wood, M.: Developing Multiagent Systems with agent Tool. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, p. 46. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Eurescom, Project P907-GI - MESSAGE: Methodology for Engineering Systems of Software Agents, Deliverable 1 - Initial Methodology, http://www.eurescom.de/~pub-deliverables/P900-series/P907/Dl/P907Dl
  8. 8.
    Gleizes, M.-P., Glize, P., Régis, C., Sontheimer, T.: Real-time Simulation for Flood Forecast: an Adaptive Multi-Agent System STAFF. In: AISB 2003, Aberystwyth (April 2003)Google Scholar
  9. 9.
    Gleizes, M.-P., Glize, P., Link-Pezet, J.: An Adaptive Multi-Agent Tool For Electronic Commerce. In: The workshop on Knowledge Media Networking IEEE Ninth International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2000), Gaithersburg, Maryland, June 14-16 (2000)Google Scholar
  10. 10.
    Gleizes, M.-P., George, J.-P., Glize, P.: A Theory ofComplex Adaptive Systems Based on Co-operative Self-Organisation: Demonstration in Electronic Commerce. In: Self-Organisation in Multi-Agent Systems (SOMAS), July 27-28 (2000), Milton Keynes UK, A Workshop organised by the Emergent Computing NetworkGoogle Scholar
  11. 11.
    Gleizes, M.-P., Camps, V., Glize, P.: A Theory of Emergent Computation Based on Cooperative Self-Oganization for Adaptive Artificial Systems. In: Fourth European Congress of Systems Science, Valencia (1999)Google Scholar
  12. 12.
    Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addison-Wesley, Reading (1999)Google Scholar
  13. 13.
    Heylighen, F.: The Science of Self-organization and Adaptivity, In: The Encyclopedia of Life Support Systems, EOLSS Publishers Co. Ltd (2001)Google Scholar
  14. 14.
    Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modelling Technique for Systems of BDI Agents. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Gomez Sanz, J., Fuentes, R.: Agent Oriented System Engineering with INGENIAS. In: Fourth Iberoamerican Workshop on Multi-Agent Systems, Iberagents (2002)Google Scholar
  16. 16.
    Link-Pezet, J., Gleizes, M.-P., Glize, P.: FORSIC: a Self-Organizing Training System. In: International ICSC Symposium on Multi-Agents and Mobile Agents in Virtual Organizations and E-Commerce (MAMA 2000), Wollongong, Australia, December 11-13 (2000)Google Scholar
  17. 17.
    Odell, J., Parunak, H.V., Bauer, B.: Extending UML for Agents. In: Proceedings of the Agent Oriented Information Systems (AOIS) Workshop at the 17th National Conference on Artificial Intelligence, AAAI (2000)Google Scholar
  18. 18.
    OMG, Software Process Engineering Metamodel Specification, http://cgi.omg.org/docs/formal/02-ll-14.pdf.
  19. 19.
    Picard, G., Gleizes, M.-P.: An Agent Architecture to Design Self-Organizing Collectives: Principles and Application. In: Proceedings of the AISB 2002 Convention Symposium on Adaptive Agents and Multi-Agent Systems, University of London, April 3-5 (2002)Google Scholar
  20. 20.
    Piquemal-Baluard, C., Camps, V., Gleizes, M.-P., Glize, P.: Cooperative Agents to Improve Adaptivity of Multi-Agent Systems. In: Taylor, N.S., Nealon, J.L. (eds.) Intelligent Agents Workshop of the British Computer Society, Oxford (November 1995)Google Scholar
  21. 21.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)Google Scholar
  22. 22.
    Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Topin, X., Fourcassie, V., Gleizes, M.-P., Theraulaz, G., Regis, C., Glize, P.: Theories and Experiments on Emergent Behaviour: From Natural to Artificial Systems and Back. In: Proceedings on European Conference on Cognitive Science, Siena (1999)Google Scholar
  24. 24.
    Wooldridge, M., Jennings, N.R.: Kinny d., A Methodology for Agent-Oriented Analysis and Design. In: Proceedings of the 3rd International Conference on Autonomous Agents (Agents 1999), Seattle, WA, pp. 69–76 (May 1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Carole Bernon
    • 1
  • Valérie Camps
    • 2
  • Marie-Pierre Gleizes
    • 1
  • Gauthier Picard
    • 1
  1. 1.IRITUniversité Paul SabatierToulouse, Cedex 4France
  2. 2.L3IUniversité La RochelleLa Rochelle, Cedex 1France

Personalised recommendations