Advertisement

An Evolutionary Approach for Studying Heterogeneous Strategies in Electronic Markets

  • Alexander Babanov
  • Wolfgang Ketter
  • Maria Gini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2977)

Abstract

We propose an evolutionary approach for studying strategic agents that interact in electronic marketplaces. We describe how this approach can be used when agents’ strategies are based on different methodologies, employing incompatible rules for collecting information and for reproduction. We present experimental results from a simulated market, where multiple service providers compete for customers using different deployment and pricing schemes. The results show that heterogeneous strategies evolve in the same market and provide useful research data.

Keywords

Evolutionary Approach Price Strategy Evolutionary Framework Evolutionary Game Theory Electronic Marketplace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anas, A., Arnott, R., Small, K.A.: Urban spatial structure. Journal of Economic Literature 36(3), 1426–1464 (1998)Google Scholar
  2. 2.
    Axelrod, R.M.: The evolution of cooperation. Basic Books, New York (1984)Google Scholar
  3. 3.
    Axelrod, R.: The complexity of cooperation. Princeton University Press, Princeton (1997)Google Scholar
  4. 4.
    Babanov, A., Ketter, W., Gini, M.: An evolutionary framework for large-scale experimentation in multi-agent systems. In: Wagner, T. (ed.) MAS Problem Spaces and Their Implications to Achieving Globally Coherent Behavior, Kluwer, Dordrecht (2003)Google Scholar
  5. 5.
    Brooks, C.H., Gazzale, R., Das, R., Kephart, J.O., MacKie-Mason, J.K., Durfee, E.H.: Model selection in an information economy: Choosing what to learn. Computational Intelligence (April 2002)Google Scholar
  6. 6.
    Cliff, D., Bruten, J.: Minimal intelligence agents for bargaining behaviors in marketbased environments. Technical Report HPL-97-91, Hewlett Packard Labs (1997)Google Scholar
  7. 7.
    Cliff, D.: Evolutionary optimization of parameter sets for adaptive softwareagent traders in continuous double auction markets. Technical Report HPL-2001-99, Hewlett Packard Labs (2001)Google Scholar
  8. 8.
    Collins, J., Ketter, W., Gini, M.: A multi-agent negotiation testbed for contracting tasks with temporal and precedence constraints. Int’l Journal of Electronic Commerce 7(1), 35–57 (2002)Google Scholar
  9. 9.
    Das, R., Hanson, J.E., Kephart, J.O., Tesauro, G.: Agenthuman interactions in the continuous double auction. In: Proc. of the 17th Joint Conf. on Artificial Intelligence, Seattle, WA, USA (August 2001)Google Scholar
  10. 10.
    DiMicco, J.M., Greenwald, A., Maes, P.: Dynamic pricing strategies under a finite time horizon. In: Proc. of ACM Conf. on Electronic Commerce (EC 2001) (October 2001)Google Scholar
  11. 11.
    Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press, Cambridge (1996)Google Scholar
  12. 12.
    Forrest, S.: Genetic algorithms: Principles of natural selection applied to computation. Science 261, 872–878 (1993)CrossRefGoogle Scholar
  13. 13.
    Gaylord, R.J., D’Andrea, L.J.: Simulating Society. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  14. 14.
    Kephart, J.O., Hanson, J.E., Greenwald, A.R.: Dynamic pricing by software agents. Computer Networks 32(6), 731–752 (2000)CrossRefGoogle Scholar
  15. 15.
    Lerman, K.: Design and mathematical analysis of agent-based systems. In: Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.) FAABS 2000. LNCS (LNAI), vol. 1871, pp. 222–233. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Lindgren, K.: Evolutionary dynamics in game-theoretic models. In: The Economy as an Evolving Complex System II, pp. 337–367 (1997)Google Scholar
  17. 17.
    McFadzean, D., Stewart, D., Tesfatsion, L.: A computational laboratory for evolutionary trade networks. IEEE Transactions on Evolutionary Computation 5(5), 546–560 (2001)CrossRefGoogle Scholar
  18. 18.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  19. 19.
    Mills, E.S., Lav, M.R.: A model of market areas with free entry. Journal of Political Economy 72(3), 278–288 (1964)CrossRefGoogle Scholar
  20. 20.
    Nelson, R.R.: Recent evolutionary theorizing about economic change. Journal of Economic Literature 33(1), 48–90 (1995)Google Scholar
  21. 21.
    Oechssler, J., Riedel, F.: On the dynamic foundation of evolutionary stability in continuous models. Journal of Economic Theory 107, 223–252 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    O’Sullivan, A.: Urban Economics. McGraw-Hill Higher Education (1999)Google Scholar
  23. 23.
    Park, S., Durfee, E.H., Birmingham, W.P.: An adaptive agent bidding strategy based on stochastic modeling. In: Proc. of the Third Int’l Conf. on Autonomous Agents (1999)Google Scholar
  24. 24.
    Phelps, S., McBurney, P., Parsons, S., Sklar, E.: Coevolutionary mechanism design: a preliminary report. In: Padget, J., Shehory, O., Parkes, D.C., Sadeh, N.M., Walsh, W.E. (eds.) AMEC 2002. LNCS (LNAI), vol. 2531, pp. 123–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Roth, A.E.: The economist as engineer: Game theory, experimentation, and computation as tools for design economics. Econometrica 70(4), 1341–1378 (2002)zbMATHCrossRefGoogle Scholar
  26. 26.
    Schelling, T.C.: Micromotives and Macrobehavior. W.W. Norton & Company, Inc., New York (1978)Google Scholar
  27. 27.
    Shehory, O., Kraus, S., Yadgar, O.: Emergent cooperative goal-satisfaction in large scale automated-agent systems. Artificial Intelligence 110(1) (May 1999)Google Scholar
  28. 28.
    Maynard Smith, J.: Evolution and the Theory of Games, December 1982. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  29. 29.
    Tesfatsion, L.: Agent-based computational economics: Growing economies from the bottom up. Artificial Life 8(1), 55–82 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Weibull, J.W.: Evolutionary Game Theory. The MIT Press, Cambridge (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alexander Babanov
    • 1
  • Wolfgang Ketter
    • 1
  • Maria Gini
    • 1
  1. 1.University of MinnesotaMinneapolisUSA

Personalised recommendations