Self-Organisation: Paradigms and Applications

  • Giovanna Di Marzo Serugendo
  • Noria Foukia
  • Salima Hassas
  • Anthony Karageorgos
  • Soraya Kouadri Mostéfaoui
  • Omer F. Rana
  • Mihaela Ulieru
  • Paul Valckenaers
  • Chris Van Aart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2977)


A self-organising system functions without central control, and through contextual local interactions. Components achieve a simple task individually, but a complex collective behaviour emerges from their mutual interactions. Such a system modifies its structure and functionality to adapt to changes to requirements and to the environment based on previous experience. Nature provides examples of self-organisation, such as ants food foraging, molecules formation, or antibodies detection. Similarly, current software applications are driven by social interactions (negotiations, transactions), based on autonomous entities or agents, and run in highly dynamic environments. The issue of engineering applications, based on the principles of self-organisation to achieve robustness and adaptability, is gaining increasing interest in the software research community. The aim of this paper is to survey natural and artificial complex systems exhibiting emergent behaviour, and to outline the mechanisms enabling such behaviours.


Self-organisation self-organising application emergence collective behaviour multi-agent systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
    Visual behaviors for mobile robots project,
  8. 8.
    Bar-Yam, Y.: Dynamics of Complex Systems. Perseus Books, Cambridge (1997)zbMATHGoogle Scholar
  9. 9.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, UK (1999)zbMATHGoogle Scholar
  10. 10.
    Bonabeau, E., Fourcassié, V., Deneubourg, J.-L.: The phase-ordering kinetics of cemetery organization in ants. Technical Report 98-01-008, Santa Fe Institute (1998)Google Scholar
  11. 11.
    Camazine, S., Deneubourg, J.-L., Nigel, R.F., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological System. Princeton Studies in Complexity. Princeton University Press, Princeton (2001)Google Scholar
  12. 12.
    Carriero, N., Gelernter, D.: Tuple Analysis and Partial Evaluation Strategies in the Linda Compiler. In: Second Workshop on Languages and Compilers for Parallel Computing, pp. 115–125. MIT Press, Cambridge (1989)Google Scholar
  13. 13.
    Chen, Q., Hsu, M., Daya, U., Griss, M.: Multi-Agent Cooperation, Dynamic Workflow and XML for E-Commerce Automation. In: Sierra, C., Gini, M., Rosenschein, J. (eds.) Proceedings of the Fourth International Conference on Autonomous Agents, pp. 255–263. ACM Press, New York (2000)CrossRefGoogle Scholar
  14. 14.
    Christensen, J.H.: Holonic manufacturing systems: Initial architecture and standards directions. In: Proceedings of the First European Conference on Holonic Manufacturing Systems (1994)Google Scholar
  15. 15.
    Ciancarini, P.: Multiagent coordination: A computer science perspective. In: Demazeau, Y. (ed.) Modelling Autonomous Agents in a Multi-Agent World, MAAMAW 2001 (2001)Google Scholar
  16. 16.
    Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The coordination viewpoint. In: Jennings, N.R. (ed.) ATAL 1999. LNCS (LNAI), vol. 1757, pp. 250–259. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Deneubourg, J.-L., Goss, S., Francks, N., Sendova-Francks, A., Detrain, C., Chretien, L.: The dynamic of collective sorting: Robot-like ants and and-like robots. In: Meyer, J.A., Wilson, S.W. (eds.) Proceedings of the First International Conference on Simulation and Adaptive Behavior: From Animals to Animat., pp. 356–363. MIT Press, Cambridge (1991)Google Scholar
  18. 18.
    Di Caro, G., Dorigo, M.: Ant colonies for adaptive routing in packet-switched communications networks. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, p. 673. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.): ESOA 2003. LNCS (LNAI), vol. 2977, Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.-C.: Scenarios for Ambient Intelligence in 2010. Technical report, Institute for Prospective Technological Studies (2001)Google Scholar
  21. 21.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. IEEE Computer 35(3), 66–71 (2002)Google Scholar
  22. 22.
    Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for Unix processes. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 120–128. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  23. 23.
    Foukia, N., Hassas, S., Fenet, S., Hulaas, J.: An intrusion response scheme: Tracking the source using the stigmergy paradigm. In: Proceedings of the Security of Mobile Multi-Agent Systems Workshop (SEMAS 20202) (July 2002)Google Scholar
  24. 24.
    Gelernter, D.: Generative communication in linda. ACM Transactions on Programming Languages and Systems 7(1), 80–112 (1985)zbMATHCrossRefGoogle Scholar
  25. 25.
    Grassé, P.P.: La reconstruction du nid et les interactions inter-individuelles chez les bellicositermes natalenis et cubitermes sp. la théorie de la stigmergie: essai d’interprétation des termites constructeurs. Insectes Sociaux 6, 41–83 (1959)CrossRefGoogle Scholar
  26. 26.
    Hales, D., Edmonds, B.: Evolving Social Rationality for MAS using ”Tags”. In: Rosenschein, J.S., Sandholm, T., Wooldridge, M., Yokoo, M. (eds.) Second International Joint Conference on Autonomous Agents and Multi Agent Systems, pp. 495–503. ACM Press, New York (2003)Google Scholar
  27. 27.
    Hardaker, G., Graham, G.: Energizing your e-Commerche through Self, Salford (2002)Google Scholar
  28. 28.
    Helal, S., Wang, M., Jagatheesan, A.: Service-centric brokering in dynamic ebusiness agent communities. Journal of Electronic Commerce Research (JECR), Special Issue in Intelligent Agents in E-Commerce 2(1) (February 2001)Google Scholar
  29. 29.
    Holland, O.: Multi-agent systems: Lessons from social insects and collective robotics. In: Sen, S. (ed.) Working Notes for the AAAI Symposium on Adaptation, Co-evolution and Learning in Multiagent Systems, March 1996, pp. 57–62 (1996)Google Scholar
  30. 30.
    Holland, O., Melhuis, C.: Stimergy, self-organization, and sorting in collective robotics. Artificial Life 5(2), 173–202 (1999)CrossRefGoogle Scholar
  31. 31.
    Itao, T., Suda, T., Aoyama, T.: Jack-in-the-net: Adaptive networking architecture for service emergence. In: Proceedings of the Asian-Pacific Conference on Communications (2001)Google Scholar
  32. 32.
    Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems 1(1), 7–38 (1998)CrossRefGoogle Scholar
  33. 33.
    Kauffman, S.: At Home in the Universe - The Search for the Laws of Self- Organization and Complexity. Oxford University Press, Oxford (1997)Google Scholar
  34. 34.
    Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1), 41–50 (2003)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Koestler, A.: The Ghost in the Machine, Arkana (1967)Google Scholar
  36. 36.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  37. 37.
    Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: WEBSOM for textual data mining. Artificial Intelligence Review 15(5/6), 345–364 (1999)CrossRefGoogle Scholar
  38. 38.
    Lynden, S., Rana, O.F.: Coordinated learning to support resource management in computational grids. In: Proceedings of 2nd IEEE Conference on Peer-to-Peer Computing (P2P 2002), pp. 81–89. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  39. 39.
    Mamei, M., Zambonelli, F.: Self-Organization in MultiAgent Systems: a Middleware approach. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  40. 40.
    Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a unifying approach to the engineering of swarm intelligent systems. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 68–81. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  41. 41.
    Martino, S.: A mobile agent approach to intrusion detection. Technical report, Joint Research Center - Institute for Systems, Informatics and Safety (June 1999)Google Scholar
  42. 42.
    McHugh, P., Merli, G., Wheeler, W.A.: Beyond Business Process Reengineering: Towards the Holonic Enterprise. John Wiley and Sons, Chichester (1995)Google Scholar
  43. 43.
    Nedelec, F., Surrey, T., Karsenti, E.: Self-organisation and forces in the microtubule cytoskeleton. Current Opinion in Cell Biology 15(2), 118–124 (2003)CrossRefGoogle Scholar
  44. 44.
    O’Hare, G., Jennings, N.R.: Foundations of Distributed Artificial Intelligence. John Wiley and Sons, New York (1996)Google Scholar
  45. 45.
    Parunak, H.V.D., VanderBok, R.S.: Managing emergent behavior in distributed control systems. In: Proceedings of ISA Tech 1997, Instrument Society of America (1997)Google Scholar
  46. 46.
    Russel, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice-Hall, Englewood Cliffs (1995)Google Scholar
  47. 47.
    Shen, W., Norrie, D.H.: Agent-based systems for intelligent manufacturing: a state-of-the-art survey. Knowledge and Information Systems, an International Journal 1(2), 129–156 (1999)Google Scholar
  48. 48.
    Stewart, M.: The Coevolving Organization. Decomplexity Associates LtD (2001)Google Scholar
  49. 49.
    Ulieru, M.: Emergence of holonic enterprises from multi-agent systems: A fuzzyevolutionary approach. In: Loia, V. (ed.) Soft Computing Agents: A New Perspective on Dynamic Information Systems, pp. 187–215. IOS Press, Amsterdam (2002)Google Scholar
  50. 50.
    Ulieru, M.: Internet-enabled soft computing holarchies for e-health applications. In: Zadeh, L.A., Nikravesh, M. (eds.) New Directions in Enhancing the Power of the Internet, Springer, Heidelberg (2003) (to appear)Google Scholar
  51. 51.
    Valckenaers, P., Van Brussel, H., Kollingbaum, M., Bochmann, O.: Multi-agent coordination and control using stigmergy applied to manufacturing control. In: Luck, M., Mařík, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp. 317–334. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  52. 52.
    Vittikh, V.A., Skobelev, P.O.: Multi-agents systems for modelling of selforganization and cooperation processes. In: XIII International Conference on the Application of Artificial Intelligence in Engineering, pp. 91–96 (1998)Google Scholar
  53. 53.
    Werbach, K.: Syndication - the emerging model for business in the internet era. Harvard Business Review, 85–93 (May-June 2000)Google Scholar
  54. 54.
    Wokoma, I., Sacks, L., Marshall, I.: Biologically inspired models for sensor network design. In: London Communications Symposium (2002)Google Scholar
  55. 55.
    Zhang, H., Norrie, D.H.: Holonic control at the production and controller levels. In: Proceedings of the 2nd International Workshop on Intelligent Manufacturing Systems, pp. 215–224 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Giovanna Di Marzo Serugendo
    • 1
  • Noria Foukia
    • 1
  • Salima Hassas
    • 1
  • Anthony Karageorgos
    • 1
  • Soraya Kouadri Mostéfaoui
    • 1
  • Omer F. Rana
    • 1
  • Mihaela Ulieru
    • 1
  • Paul Valckenaers
    • 1
  • Chris Van Aart
    • 1
  1. 1.Engineering Self-Organising Applications Working Group 

Personalised recommendations