Advertisement

A Geometric Approach to the Bisection Method

  • Claudio Gutierrez
  • Flavio Gutierrez
  • Maria-Cecilia Rivara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)

Abstract

The bisection method is the consecutive bisection of a triangle by the median of the longest side. This paper introduces a taxonomy of triangles that precisely captures the behavior of the bisection method. Our main result is an asymptotic upper bound for the number of similarity classes of triangles generated on a mesh obtained by iterative bisection, which previously was known only to be finite. We also prove that the number of directions on the plane given by the sides of the triangles generated is finite. Additionally, we give purely geometric and intuitive proofs of classical results for the bisection method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, A.: On the Bisection Method for Triangles. Mathematics of Computation 40(162), 571–574 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Kearfott, B.: A Proof of Convergence and an Error Bound for the Method of Bisection in Rn. Mathematics of Computation 32(144), 1147–1153 (1978)zbMATHMathSciNetGoogle Scholar
  3. 3.
    O’Rourke, J.: Computational Geometry Column 23. International Journal of Computational Geometry & Applications 4(2), 239–242 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Rivara, M.C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. International journal for numerical methods in Engineering 20, 745–756 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Rivara, M.-C., Irribarren, G.: The 4-Triangles Longest-side Partition of Triangles and Linear Refinement Algorithms. Mathematics of Computation 65(216), 1485–1502 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Rivara, M.C., Levin, C.: A 3d Refinement Algorithm for adaptive and multigrid Techniques. Communications in Applied Numerical Methods 8, 281–290 (1992)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rosenberg, I.G., Stenger, F.: A Lower Bound on the Angles of Triangles Constructed by Bisecting the Longest Side. Mathematics of Computation 29(130), 390–395 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Stynes, M.: On Faster Convergence of the Bisection Method for certain Triangles. Mathematics of Computation 33, 1195–1202 (1979)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Stynes, M.: On Faster Convergence of the Bisection Method for all Triangles. Mathematics of Computation 35(152), 1195–1202 (1980)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Claudio Gutierrez
    • 1
  • Flavio Gutierrez
    • 2
  • Maria-Cecilia Rivara
    • 1
  1. 1.Department of Computer ScienceUniversidad de ChileSantiagoChile
  2. 2.Universidad de ValparaísoValparaísoChile

Personalised recommendations