Advertisement

Off-Centers: A New Type of Steiner Points for Computing Size-Optimal Quality-Guaranteed Delaunay Triangulations

  • Alper Üngör
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)

Abstract

We introduce a new type of Steiner points, called off-centers, as an alternative to circumcenters, to improve the quality of Delaunay triangulations. We propose a new Delaunay refinement algorithm based on iterative insertion of off-centers. We show that this new algorithm has the same quality and size optimality guarantees of the best known refinement algorithms. In practice, however, the new algorithm inserts about 40% fewer Steiner points (hence runs faster) and generates triangulations that have about 30% fewer elements compared with the best previous algorithms.

Keywords

Delaunay refinement computational geometry triangulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bern, M., Eppstein, D., Gilbert, J.: Provably good mesh generation. J. Comp. System Sciences 48, 384–409 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chew, L.P.: Guaranteed-quality triangular meshes. TR-89-983, Cornell Univ. (1989)Google Scholar
  3. 3.
    Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4, 97–108 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dey, T.K., Bajaj, C.L., Sugihara, K.: On good triangulations in three dimensions. Int. J. Computational Geometry & Applications 2(1), 75–95 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Univ. Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Edelsbrunner, H., Guoy, D.: Sink insertion for mesh improvement. In: Proc. 17th ACM Symp. Comp. Geometry, pp. 115–123 (2001)Google Scholar
  7. 7.
    Miller, G.L.: A time efficient Delaunay refinement algorithm. In: Proc. ACM-SIAM Symp. on Disc. Algorithms (to appear, 2004)Google Scholar
  8. 8.
    Miller, G.L., Pav, S., Walkington, N.: When and why Ruppert’s algorithm works. In: Proc. 12th Int. Meshing Roundtable, pp. 91–102 (2003)Google Scholar
  9. 9.
    Ruppert, J.: A new and simple algorithm for quality 2-dimensional mesh generation. In: Proc. 4th ACM-SIAM Symp. on Disc. Algorithms, pp. 83–92 (1993)Google Scholar
  10. 10.
    Shewchuk, J.R.: Delaunay Refinement Mesh Generation. Ph.D. thesis, Carnegie Mellon University (1997)Google Scholar
  11. 11.
    Spielman, D.A., Teng, S.-H., Üngör, A.: Parallel Delaunay refinement: Algorithms and analyses. In: Proc. 11th Int. Meshing Roundtable, pp. 205–217 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alper Üngör
    • 1
  1. 1.Department of Computer Science Duke UniversityDurhamUSA

Personalised recommendations