On Partitioning Interval and Circular-Arc Graphs into Proper Interval Subgraphs with Applications

  • Frédéric Gardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)


In this note, we establish that any interval or circular-arc graph with n vertices admits a partition into O(log n) proper interval subgraphs. This bound is shown to be asymptotically sharp for an infinite family of interval graphs. Moreover, the constructive proof yields a linear-time and space algorithm to compute such a partition. The second part of the paper is devoted to an application of this result, which has actually inspired this research: the design of an efficient approximation algorithm for a \(\mathcal{NP}\)-hard problem of planning working schedules.


Linear Time Interval Graph Color Class Information Processing Letter Interval Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, M.G., Atallah, M.J., Chen, D.Z., Lee, D.T.: Parallel algorithms for maximum matching in complements of interval graphs and related problems. Algorithmica 26, 263–289 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I. Theoretical Computer Science 148, 93–109 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.: Simple linear time recognition of unit interval graphs. Information Processing Letters 55, 99–104 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm? In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180. ACM Publications, New York (1998)Google Scholar
  5. 5.
    Gardi, F.: Efficient algorithms for disjoint matchings among intervals and related problems. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 168–180. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Computer Science and Applied Mathematics Series. Academic Press, New York (1980)zbMATHGoogle Scholar
  7. 7.
    Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12, 459–467 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fishburn, P.C.: Interval Orders and Interval Graphs. John Wiley & Sons, New York (1985)zbMATHGoogle Scholar
  9. 9.
    Habib, M., McConnel, R., Paul, C., Viennot, L.: Lex-BSF and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234, 59–84 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    McConnel, R.: Linear time recognition of circular-arc graphs. In: Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science, pp. 386–394. IEEE Computer Society Publications, Los Alamitos (2001)Google Scholar
  11. 11.
    Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Processing Letters 37, 21–25 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bamboo-Planification by Prologia - Groupe Air Liquide,
  13. 13.
    Roberts, F.S.: Graph Theory and its Application to the Problems of Society. SIAM Publications, Philadelphia (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Frédéric Gardi
    • 1
  1. 1.Laboratoire d’Informatique FondamentaleParc Scientifique et Technologique de LuminyMarseille Cedex 9France

Personalised recommendations