Advertisement

The Complexity of Finding Top-Toda-Equivalence-Class Members

  • Lane A. Hemaspaandra
  • Mitsunori Ogihara
  • Mohammed J. Zaki
  • Marius Zimand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2976)

Abstract

We identify two properties that for P-selective sets are effectively computable. Namely we show that, for any P-selective set, finding a string that is in a given length’s top Toda equivalence class (very informally put, a string from Σ n that the set’s P-selector function declares to be most likely to belong to the set) is FP\(^{\Sigma^{p}_{2}}\) computable, and we show that each P-selective set contains a weakly-P\(^{\Sigma^{p}_{2}}\)-rankable subset.

Keywords

Reachability Problem Commutative Function Polynomial Hierarchy Mathematical System Theory SIGACT News 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertoni, A., Goldwurm, M., Sabadini, N.: The complexity of computing the number of strings of given length in context-free languages. Theoretical Computer Science 86(2), 325–342 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Denny-Brown, D., Han, Y., Hemaspaandra, L., Torenvliet, L.: Semi-membership algorithms: Some recent advances. SIGACT News 25(3), 12–23 (1994)CrossRefGoogle Scholar
  3. 3.
    Goldberg, A., Sipser, M.: Compression and ranking. SIAM Journal on Computing 20(3), 524–536 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gurevich, Y.: Algebras of feasible functions. In: Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, pp. 210–214. IEEE Computer Society Press, Los Alamitos (1983)Google Scholar
  5. 5.
    Hartmanis, J., Immerman, N.: On complete problems for NP∩coNP. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 250–259. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  6. 6.
    Hartmanis, J., Yesha, Y.: Computation times of NP sets of different densities. Theoretical Computer Science 34(1-2), 17–32 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hemachandra, L., Rudich, S.: On the complexity of ranking. Journal of Computer and System Sciences 41(2), 251–271 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hemaspaandra, E., Naik, A., Ogihara, M., Selman, A.: P-selective sets and reducing search to decision vs. self-reducibility. Journal of Computer and System Sciences 53(2), 194–209 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hemaspaandra, L., Hempel, H., Nickelsen, A.: Algebraic properties for deterministic selectivity. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 49–58. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Hemaspaandra, L., Hempel, H., Nickelsen, A.: Algebraic properties for deterministic and nondeterministic selectivity. Technical Report TR-778, Department of Computer Science, University of Rochester, Rochester, NY (May 2002) (revised, May 2003)Google Scholar
  11. 11.
    Hemaspaandra, L., Hoene, A., Naik, A., Ogiwara, M., Selman, A., Thierauf, T., Wang, J.: Nondeterministically selective sets. International Journal of Foundations of Computer Science 6(4), 403–416 (1995)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hemaspaandra, L., Naik, A., Ogihara, M., Selman, A.: Computing solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Computing 25(4), 697–708 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hemaspaandra, L., Nasipak, C., Parkins, K.: A note on linear-nondeterminism, linearsized, Karp–Lipton advice for the P-selective sets. Journal of Universal Computer Science 4(8), 670–674 (1998)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  15. 15.
    Hemaspaandra, L., Ogihara, M., Wechsung, G.: Reducing the number of solutions of NP functions. Journal of Computer and System Sciences 64(2), 311–328 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hemaspaandra, L., Ogihara, M., Zaki, M., Zimand, M.: The complexity of finding top-Todaequivalence-class members. Technical Report TR-808, Department of Computer Science, University of Rochester, Rochester, NY (August 2003)Google Scholar
  17. 17.
    Hemaspaandra, L., Torenvliet, L.: Optimal advice. Theoretical Computer Science 154(2), 367–377 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hemaspaandra, L., Torenvliet, L.: Theory of Semi-Feasible Algorithms. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  19. 19.
    Hemaspaandra, L., Zaki, M., Zimand, M.: Polynomial-time semi-rankable sets. Journal of Computing and Information 2(1); Special Issue: Proceedings of the 8th International Conference on Computing and Information, pp. 50–67 (1996) CD-ROM ISSN 1201- 8511/V2/#1Google Scholar
  20. 20.
    Huynh, D.: The complexity of ranking simple languages. Mathematical Systems Theory 23(1), 1–20 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Jockusch, C.: Semirecursive sets and positive reducibility. Transactions of the AMS 131(2), 420–436 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Landau, H.: On dominance relations and the structure of animal societies, III: The condition for score structure. Bulletin of Mathematical Biophysics 15(2), 143–148 (1953)CrossRefGoogle Scholar
  23. 23.
    Naik, A., Rogers, J., Royer, J., Selman, A.: A hierarchy based on output multiplicity. Theoretical Computer Science 207(1), 131–157 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Nickelsen, A.: Polynomial-time partial information classes. Wissenschaft und TechnikVerlag (2001); Also Ph.D. thesis, Technische Universität Berlin, Berlin, Germany (1999)Google Scholar
  25. 25.
    Nickelsen, A., Tantau, T.: Partial information classes. SIGACT News 34(1) (2003)Google Scholar
  26. 26.
    Ogihara, M.: Functions computable with limited access to NP. Information Processing Letters 58(1), 35–38 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Selman, A.: P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP. Mathematical Systems Theory 13(1), 55–65 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Selman, A.: Analogues of semirecursive sets and effective reducibilities to the study of NP complexity. Information and Control 52(1), 36–51 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Selman, A.: Reductions on NP and P-selective sets. Theoretical Computer Science 19(3), 287–304 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Shen, J., Sheng, L., Wu, J.: Searching for sorted sequences in tournaments. SIAM Journal on Computing 32(5), 1201–1209 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Sipser, M.: On relativization and the existence of complete sets. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 523–531. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  32. 32.
    Tantau, T.: A note on the complexity of the reachability problem for tournaments. Technical Report TR01-092, Electronic Colloquium on Computational Complexity (November 2001), http://www.eccc.uni-trier.de/eccc/
  33. 33.
    Toda, S.: On polynomial-time truth-table reducibilities of intractable sets to P-selective sets. Mathematical Systems Theory 24(2), 69–82 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lane A. Hemaspaandra
    • 1
  • Mitsunori Ogihara
    • 1
  • Mohammed J. Zaki
    • 2
  • Marius Zimand
    • 3
  1. 1.Department of Computer ScienceUniversity of RochesterRochester
  2. 2.Department of Computer ScienceRensselaer Polytechnic InstituteTroy
  3. 3.Department of Computer and Information SciencesTowson Univ.Baltimore

Personalised recommendations