Advanced High Performance Algorithms for Data Processing

  • Alexander V. Bogdanov
  • Alexander V. Boukhanovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3036)


We analyze the problem of processing of very large datasets on parallel systems and find that the natural approaches to parallelization fail for two reasons. One is connected to long-range correlations between data and the other comes from nonscalar nature of the data. To overcome those difficulties the new paradigm of the data processing is proposed, based on a statistical simulation of the datasets, which in its turn for different types of data is realized on three approaches – decomposition of the statistical ensemble, decomposition on the base of principle of mixing and decomposition over the indexing variable. Some examples of proposed approach show its very effective scaling.


Significant Wave Height Statistical Ensemble Parallel Computer System Intrinsic Parallelization Random Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adomian, G.: Stochastic systems. Academic Press, London (1983)zbMATHGoogle Scholar
  2. 2.
    Anderson, T.W., Gupta, S.D., Styan, G.P.H.: A bibliography of multivariate statistical analysis. Robert E. Krieder Pub. Company, Hantington (1977)zbMATHGoogle Scholar
  3. 3.
    Blais, J.A.R.: Estimation and spectral analysis. Univ. of Calgary Press (1988)Google Scholar
  4. 4.
    Boukhanovsky, A.V., Degtyarev, A.B., Rozhkov, V.A.: Peculiarities of computer simulation and statistical representation of time–spatial metocean fields. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp. 463–472. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boukhanovsky, A.V.: Multivariate stochastic models of metocean fields: computational aspects and applications. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2329, pp. 216–225. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Boukhanovsky, A.V., Krogstad, H., Lopatoukhin, L., Rozhkov, V., Athanassoulis, G.: Stochastic simulation of inhomogeneous metocean fields. Part II: Synoptic variability and rare events. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 223–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Boukhanovsky, A., Ivanov, S.: Stochastic simulation of inhomogeneous metocean fields. Part III: High-performance parallel algorithms. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2658, pp. 234–244. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Boukhanovsky, et al.: Telemedicine complex on the base of supercomputer technologies. In: Proceeding of X Russian Scientific Conference “Telematica-2003”, vol. 1, pp. 288–289 (2003) (in Russian)Google Scholar
  9. 9.
    Dempster, A.P.: Elements of continuous multivariate analysis. Addison-Wesley Pub. Company, Reading (1969)zbMATHGoogle Scholar
  10. 10.
    Foster, J.: Designing and Building Parallel Programs. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  11. 11.
    Gerbessiotis, A.V.: Architecture independent parallel algorithm design: theory vs practice. Future Generation Computer Systems 18, 573–593 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hamon, B.V., Hannan, E.J.: Estimating relations between time series. J. of Geophysical Research 68(21), 6033–6042 (1963)Google Scholar
  13. 13.
    Jenkins, G.M., Watts, D.G.: Spectral analysis and its application, Holden-Day, San-Francisco (1969)Google Scholar
  14. 14.
    Koski, A.: Modelling ECG signals with hidden Markov models. Artificial intelligence in medicine (8), 453–471 (1996)Google Scholar
  15. 15.
    Leadbetter, M., Lindgren, G., Rootzen, H.: Extremes and related properties of random sequences and processes. Springer, NY (1986)Google Scholar
  16. 16.
    Loeve, M.: Fonctions aleatories de second odre. C.R. Acad. Sci. 220 (1945)Google Scholar
  17. 17.
    Lopatoukhin, L.J., Rozhkov, V.A., Ryabinin, V.E., Swail, V.R., Boukhanovsky, A.V., Degtyarev, A.B.: Estimation of extreme wave heights. JCOMM Technical Report, WMO/TD, #1041 (2000)Google Scholar
  18. 18.
    Lopatoukhin, L.J., et al.: The spectral wave climate in the Barents sea. In: Proceedings of Int. Conf OMAE 2002, Oslo, Norway, June 23-28 (2002) (CD-version)Google Scholar
  19. 19.
    Lutkepohl, H.: Introduction to multivariate time series analysis. Springer, Heidelberg (1991)Google Scholar
  20. 20.
    Ogorodnikov, V.A., Prigarin, S.M.: Numerical modelling of random processes and fields: algorithms and applications., VSP, Utrecht, the Netherlands (1996)Google Scholar
  21. 21.
    Pande, S., Agrawal, D.P. (eds.): Compiler Optimizations for Scalable Parallel Systems. LNCS, vol. 1808. Springer, Heidelberg (2001)Google Scholar
  22. 22.
    Pesaran, M.H., Slater, L.J.: Dynamic regression: theory and algorithms. Ellis Horwood Limited, NY (1980)zbMATHGoogle Scholar
  23. 23.
    Rubinstein, R.Y.: Simulation and the Monte-Carlo method. John Wiley & Sons, Chichester (1981)zbMATHCrossRefGoogle Scholar
  24. 24.
    Yakowitz, S.J.: Computational Probability and Simulation. Addison-Wesley, Reading (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alexander V. Bogdanov
    • 1
  • Alexander V. Boukhanovsky
    • 1
  1. 1.Institute for High Performance Computing and Information SystemsSt. PetersburgRussia

Personalised recommendations