Advertisement

The Computational Complexity of Orientation Search in Cryo-Electron Microscopy

  • Taneli Mielikäinen
  • Janne Ravantti
  • Esko Ukkonen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3036)

Abstract

In this paper we study the problem of determining three-dimensional orientations for noisy projections of randomly oriented identical particles. The problem is of central importance in the tomographic reconstruction of the density map of macromolecular complexes from electron microscope images and it has been studied intensively for more than 30 years.

We analyze the computational complexity of the problem and show that while several variants of the problem are NP-hard and inapproximable, some restrictions are polynomial-time approximable within a constant factor or even solvable in logarithmic space. The negative complexity results give a partial justification for the heuristic methods used in the orientation search, and the positive complexity results have some positive implications also to a different problem of finding functionally analogous genes.

References

  1. 1.
    Frank, J.: Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Academic Press, London (1996)Google Scholar
  2. 2.
    Carazo, J.M., Sorzano, C.O., Rietzel, E., Schröder, R., Marabini, R.: Discrete tomography in electron microscopy. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms, and Applications, Applied and Numerical Harmonic Analysis, ch. 18, pp. 405–416. Birkhäuser, Basel (1999)Google Scholar
  3. 3.
    Crowther, R., DeRosier, D., Klug, A.: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proceedings of the Royal Society of London A 317, 319–340 (1970)CrossRefGoogle Scholar
  4. 4.
    Hallett, M.T., Lagergren, J.: Hunting for functionally analogous genes. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 465–476. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Mielikäinen, T., Ravantti, J., Ukkonen, E.: The computational complexity of orientation search problems in cryo-electron microscopy, Report C-2004-3, Department of Computer Science, University of Helsinki (2004)Google Scholar
  6. 6.
    Doerschuk, P.C., Johnson, J.E.: Ab initio reconstruction and experimental design for cryo electron microscopy. IEEE Transactions on Information Theory 46(5), 1714–1729 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ji, Y., Marinescu, D.C., Chang, W., Baker, T.S.: Orientation refinement of virus structures with unknown symmetry. In: Proceedings of the International Parallel and Distributed Processing Symposium, pp. 49–56. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  8. 8.
    Lanczycki, C.J., Johnson, C.A., Trus, B.L., Conway, J.F., Steven, A.C., Martino, R.L.: Parallel computing strategies for determining viral capsid structure by cryo-electron microscopy. IEEE Computational Science & Engineering 5, 76–91 (1998)CrossRefGoogle Scholar
  9. 9.
    Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: Three-dimensional reconstruction of icosahedral. Microbiology and Molecular Biology Reviews 63(4), 862–922 (1999)Google Scholar
  10. 10.
    van Heel, M.: Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21, 11–124 (1987)Google Scholar
  11. 11.
    Bellon, P.L., Cantele, F., Lanzavecchia, S.: Correspondence analysis of sinogram lines. Sinogram trajectories in factor space replace raw images in the orientation of projections of macromolecular assemblies. Ultramicroscopy 87, 187–197 (2001)CrossRefGoogle Scholar
  12. 12.
    Penczek, P.A., Zhu, J., Frank, J.: A common-lines based method for determining orientations for N > 3 particle projections simultaneously. Ultramicroscopy 63, 205–218 (1996)CrossRefGoogle Scholar
  13. 13.
    Thuman-Commike, P.A., Chiu, W.: Improved common line-based icosahedral particle image orientation estimation algorithms. Ultramicroscopy 68, 231–255 (1997)CrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science, vol. 10. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  15. 15.
    Ausiello, G., Crescenzi, P., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  16. 16.
    Håstad, J.: Clique is hard to approximate within n1 − ε. Acta Mathematica 182, 105–142 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Böckenhauer, H.-J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. Theoretical Computer Science 185(1), 3–24 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Taneli Mielikäinen
    • 1
  • Janne Ravantti
    • 2
  • Esko Ukkonen
    • 1
  1. 1.Department of Computer Science 
  2. 2.Institute of Biotechnology and Faculty of BiosciencesUniversity of HelsinkiFinland

Personalised recommendations