Characterization of Efficiently Parallel Solvable Problems on a Class of Decomposable Graphs

  • Sun-Yuan Hsieh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3036)


In this paper, we sketch characteristics of those problems which can be systematically solved on decomposable graphs. Trees, series-parallel graphs, outerplanar graphs, and bandwidth-k graphs all belong to decomposable graphs. Let T d (|V|,|E|) and P d (|V|,|E|) denote the time complexity and processor complexity required to construct a parse tree representation T G for a decomposable G=(V,E) on a PRAM model M d . We define a general problem-solving paradigm to solve a wide class of subgraph optimization problems on decomposable graphs in O(T d (|V|,|E|)+log |V(T G )|) time using O(P d (|V|,|E|)+|V(T G )|/log |V(T G )|) processors on M d . By using our paradigm, we show the following parallel complexities: (a) The maximum independent set problem on trees can be solved in O(log |V|) time using O(|V|/log |V|) processors on an EREW PRAM. (b) The maximum matching problem on series-parallel graphs can be solved in O(log |E|) time using O(|E|/log |E|) processors on an EREW PRAM. (c) The efficient domination problem on series-parallel graphs can be solved in O(log |E|) time using O(|E|/log |E|) processors on an EREW PRAM.


  1. 1.
    Abrahamson, K., Dadoun, N., Kirkpatrick, D.G., Przytycka, T.: A simple parallel tree contraction algorithm. Journal of Algorithms 10, 287–302 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23, 11–24 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bern, M.W., Lawler, E.L., Wong, A.L.: Linear-time computation of optimal subgraphs of decomposable graphs. Journal of Algorithms 8, 216–235 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Parallel algorithms for series parallel graphs and graphs with treewidth two. Algorithmica 29(4), 534–559 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  6. 6.
    Karp, R.M., Ramachandran, V.: Parallel algorithms for shared memory machines. In: Handbook of Theoretical Computer Science, pp. 869–941. North-Holland, Amsterdan, (1990)Google Scholar
  7. 7.
    Mahajan, S., Peters, J.G.: Algorithms for regular properties in recursive graphs. In: Proceedings of the 25th Allerton Conference on Communication, Control, and Computing, pp. 14–23 (1987)Google Scholar
  8. 8.
    Mahajan, S., Peters, J.G.: Regularity and locality in k-terminal graphs. Discrete Applied Mathematics 54, 229–250 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. Journal of the ACM 29, 623–641 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series-parallel digraphs. SIAM Journal on Computing 11, 298–313 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wimer, T.V.: Linear algorithms on k-terminal graphs, Ph.D. Thesis, Clemson University, Clemson, SC (1987) Google Scholar
  12. 12.
    Wimer, T.V., Hedetniemi, S.T.: K-terminal recursive families of graphs. Congressus Numerantium 63, 161–176 (1988)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sun-Yuan Hsieh
    • 1
  1. 1.Department of Computer Science and Information EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations