Advertisement

Parallel Genetic Algorithm for Graph Coloring Problem

  • Zbigniew Kokosiński
  • Marcin Kołodziej
  • Krzysztof Kwarciany
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3036)

Abstract

In this paper a new parallel genetic algorithm for coloring graph vertices is presented. In the algorithm we apply a migration model of parallelism and define two new recombination operators: SPPX and CEX. For comparison two recently proposed crossover operators: UISX and GPX are selected. The performance of the algorithm is verified by computer experiments on a set of standard graph coloring instances.

Keywords

Chromatic Number Graph Coloring Migration Model Migration Scheme Maximum Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alba, E., Tomasini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)CrossRefGoogle Scholar
  2. 2.
    Bäck, T.: Evolutionary algorithms in theory and practice. Oxford U. Press (1996)Google Scholar
  3. 3.
    Croitoriu, C., Luchian, H., Gheorghies, O., Apetrei, A.: A new genetic graph coloring heuristic. In: Computational Symposium on Graph Coloring and Generalizations COLOR 2002, [in:] Proc. Int. Conf. Constraint Programming CP 2002 (2002)Google Scholar
  4. 4.
    Dorne, R., Hao, J.-K.: A new genetic local search algorithm for graph coloring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 745–754. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Galinier, P., Hao, J.-K.: Hybrid evolutionary algorithms for graph coloring. J. Combinatorial Optimization, 374–397 (1999)Google Scholar
  6. 6.
    Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience, Hoboken (1995)zbMATHGoogle Scholar
  7. 7.
    Johnson, D.S., Trick, M.A.: Cliques, coloring and satisfiability: 2nd DIMACS Impl. Challenge. DIMACS Series in Discr. Math. and Theor. Comp. Sc., vol. 26 (1996)Google Scholar
  8. 8.
    Khuri, S., Walters, T., Sugono, Y.: Grouping genetic algorithm for coloring edges of graph. In: Proc. 2000 ACM Symposium on Applied Computing, pp. 422–427 (2000)Google Scholar
  9. 9.
    Kubale, M.: Introduction to computational complexity and algorithmic graph coloring, GTN, Gdańsk (1998) Google Scholar
  10. 10.
    Kubale, M. (ed.): Discrete optimization. Models and methods for graph coloring, WNT, Warszawa (2002) (in Polish) Google Scholar
  11. 11.
  12. 12.
  13. 13.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Zbigniew Kokosiński
    • 1
  • Marcin Kołodziej
    • 1
  • Krzysztof Kwarciany
    • 1
  1. 1.Faculty of Electrical & Computer EngCracow University of TechnologyKrakówPoland

Personalised recommendations