An Open Grid Service Environment for Large-Scale Computational Finance Modeling Systems

  • Clemens Wiesinger
  • David Giczi
  • Ronald Hochreiter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3036)


In this paper we present the basic concepts of our complex problem modeling and solving environment based on a state of the art component architecture. We propose a system where components exist as instances of meta-components carrying relevant semantic information about the application problem realm. The implementation of the system follows the Open Grid Service Environment (OGSE) Service Stack, also discussed in this paper. A motivating workflow example from the field of computational finance is given.


Recommender System Service Description Global Grid Forum Technical Report Computer Science Open Grid Service Infrastructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blomvall, J.: A multistage stochastic programming algorithm suitable for parallel computing. Parallel Computing 29(4), 431–445Google Scholar
  2. 2.
    Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  3. 3.
    Champion, M., Ferris, C., Orchard, D., Booth, D., Haas, H., McCabe, F., Newcomer, E.: Web Services Architecture, W3C Working Draft (August 8, 2003),
  4. 4.
    Dempster, M.A.H., Scott, J.E., Thompson, G.W.P.: Stochastic Modeling and Optimization using STOCHASTICS, Draft (2002), Forthcoming in Applications of Stochastic ProgrammingGoogle Scholar
  5. 5.
    Dupacova, J., Groewe-Kuska, N., Roemisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics. Mathematical Programming 95A, 493–511 (2003)CrossRefGoogle Scholar
  6. 6.
    Ferris, M.C., Munson, T.S.: Modeling Languages and Condor: Metacomputing for Optimization. MetaNEOS Technical Report (1998) Google Scholar
  7. 7.
    Gröwe-Kuska, N., Heitsch, H., Römisch, W.: Scenario reduction and scenario tree construction for power management problems. In: Borghetti, A., Nucci, C.A., Paolone, M. (eds.) IEEE Bologna Power Tech Proceedings (2003)Google Scholar
  8. 8.
    Iyer, L.S., Aronson, J.E.: A parallel branch-and-bound method for cluster analysis. Annals of Operations Research 90, 65–86 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Laszewski, G., Foster, I., Gawor, J., Lane, P., Rehn, N., Russell, M.: Designing Grid-based Problem Solving Environments and Portals. Argonne National Laboratory (2001)Google Scholar
  10. 10.
    Leymann, F., Roller, D.: Workflow-based applications. IBM Systems Journal 36(1) (1997)Google Scholar
  11. 11.
    Linderoth, J., Wright, S.: Decomposition Algorithms for Stochastic Programming on a Computational Grid. Technical Report Computer Sciences Department, University of Wisconsin-Madison (2002)Google Scholar
  12. 12.
    Kall, P., Mayer, J.: SLP-IOR: An interactive model management system for stochastic linear programs. Mathematical Programming 75, 221–240 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Pflug, G.C., Swietanowski, A., Dockner, E., Moritsch, H.: The AURORA Financial Management System: Model and Parallel Implementation Design. Annals of Operations Research 99, 189–206 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Houstis, E., Rice, J.R.: On the Future of Problem Solving Environments. Department of Computer Sciences, Purdue University (2000)Google Scholar
  15. 15.
    Rockafellar, R.T., Uryasev, S.: Optimization of Conditional Value-At-Risk. The Journal of Risk 2(3), 21–41 (2000)Google Scholar
  16. 16.
    Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maguire, T., Sandholm, T., Vanderbilt, P., Snelling, D.: Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Forum Draft Recommendation, 6/27/2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Clemens Wiesinger
    • 1
  • David Giczi
    • 1
  • Ronald Hochreiter
    • 1
  1. 1.Department of Statistics and Decision Support SystemsUniversity of Vienna 

Personalised recommendations