Advertisement

Deterministic End-to-End Guarantees for Real-Time Applications in a DiffServ-MPLS Domain

  • Steven Martin
  • Pascale Minet
  • Laurent George
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3026)

Abstract

In this paper, we are interested in providing deterministic end-to-end guarantees to real-time applications in the Internet. We focus on two QoS parameters: the end-to-end response time and the end-to-end jitter, parameters of the utmost importance for such applications. We propose a solution, very simple to deploy, based on a combination of DiffServ and mpls. The Expedited Forwarding (ef) class of the Differentiated Services (DiffServ) model is well adapted for real-time applications as it is designed for flows with end-to-end real-time constraints. Moreover MultiProtocol Label Switching (mpls), when applied in a DiffServ architecture, is an efficient solution for providing Quality of Service (QoS) routing. The results of our worst case analysis enable to derive a simple admission control for the ef class. Resources provisioned for the ef class but not used by this class are available for the other classes.

Keywords

DiffServ MPLS EF class QoS real-time constraints deterministic guarantee admission control worst case end-to-end response time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostolopoulos, G., Williams, D., Kamat, S., Guerin, R., Orda, A., Przygienda, T.: QoS routing mechanisms and OSPF extensions. RFC 2676 (August 1999)Google Scholar
  2. 2.
    Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE: Extensions to RSVP for LSP tunnels. Internet draft (August 2001)Google Scholar
  3. 3.
    Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManusWang, J.: Requirements for traffic engineering over MPLS. RFC 2702 (September 1999)Google Scholar
  4. 4.
    Baruah, S., Howell, R., Rosier, L.: Algorithms and complexity concerning the preemptive scheduling of periodic real-time tasks on one processor. Real-Time Systems 2, 301–324 (1990)CrossRefGoogle Scholar
  5. 5.
    Bennett, J., Benson, K., Charny, A., Courtney, W., Le Boudec, J.: Delay jitter bounds and packet scale rate guarantee for Expedited Forwarding. In: INFOCOM 2001, Anchorage, USA (April 2001)Google Scholar
  6. 6.
    Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture for Differentiated Services. RFC 2475 (December 1998)Google Scholar
  7. 7.
    Braden, R., Clark, D., Shenker, S.: Integrated services in the Internet architecture: an overview. RFC 1633 (June 1994) Google Scholar
  8. 8.
    Charny, A., Le Boudec, J.: Delay bounds in a network with aggregate scheduling. QoFIS, Berlin, Germany (October 2000)Google Scholar
  9. 9.
    Chiussi, F., Sivaraman, V.: Achieving high utilization in guaranteed services networks using early-deadline-first scheduling. In: IWQoS 1998, Napo, California (May 1998)Google Scholar
  10. 10.
    Georgiadis, L., Guérin, R., Peris, V., Sivarajan, K.: Efficient network QoS provisioning based on per node traffic shaping. IEEE/ACM Transactions on Networking 4(4) (August 1996)Google Scholar
  11. 11.
    George, L., Kamoun, S., Minet, P.: First come first served: some results for real-time scheduling. In: PDCS 2001, Dallas, Texas (August 2001)Google Scholar
  12. 12.
    George, L., Marinca, D., Minet, P.: A solution for a deterministic QoS in multimedia systems. International Journal on Computer and Information Science 1(3) (September 2001)Google Scholar
  13. 13.
    Gerla, M., Casetti, C., Lee, S., Reali, G.: Resource allocation and admission control styles on QoS DiffServ networks. In: QoS-IP 2001, Rome, Italy (2001)Google Scholar
  14. 14.
    Heinanen, J., Baker, F., Weiss, W., Wroclawski, J.: Assured Forwarding PHB group. RFC 2597 (1999) Google Scholar
  15. 15.
    Jacobson, V., Nichols, K., Poduri, K.: An Expedited Forwarding PHB. RFC 2598 (June 1999)Google Scholar
  16. 16.
    Le Boudec, J., Thiran, P.: A note on time and space methods in network calculus, Technical Report, No. 97/224, Ecole Polytechnique Fédérale de Lausanne, Swiss, April 11 (1997) Google Scholar
  17. 17.
    Le Faucheur, F., Wu, L., Davari, S., et al.: MPLS support of Differentiated Services. Internet draft (2000) Google Scholar
  18. 18.
    Parekh, A., Gallager, R.: A generalized processor sharing approach to flow control in integrated services networks: the multiple node case. IEEE ACM Transactions on Networking 2(2) (1994)Google Scholar
  19. 19.
    Raz, D., Shavitt, Y.: Optimal partition of QoS requirements with discrete cost functions. In: INFOCOM 2000, Tel-Aviv, Israel (March 2000)Google Scholar
  20. 20.
    Sivaraman, V., Chiussi, F., Gerla, M.: Traffic shaping for end-to-end delay guarantees with EDF scheduling. In: IWQoS 2000, Pittsburgh (June 2000)Google Scholar
  21. 21.
    Sivaraman, V., Chiussi, F., Gerla, M.: End-to-end statistical delay service under GPS and EDF scheduling: a comparaison study. In: INFOCOM 2001, Anchorage, Alaska (April 2001)Google Scholar
  22. 22.
    Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems. Microprocessors and Microprogramming, Euromicro Journal 40, 117–134 (1994)CrossRefGoogle Scholar
  23. 23.
    Vojnovic, M., Le Boudec, J.: Stochastic analysis of some expedited forwarding networks. In: NFOCOM 2002, NewYork (June 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Steven Martin
    • 1
  • Pascale Minet
    • 2
  • Laurent George
    • 3
  1. 1.Ecole Centrale d’Electronique, LACCSCParisFrance
  2. 2.INRIA, Domaine de Voluceau, RocquencourtLe ChesnayFrance
  3. 3.Université Paris 12, LIIAVitryFrance

Personalised recommendations