Advertisement

Identity Based Undeniable Signatures

  • Benoît Libert
  • Jean-Jacques Quisquater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)

Abstract

In this paper, we give a first example of identity based undeniable signature using pairings over elliptic curves. We extend to the identity based setting the security model for the notions of invisibility and anonymity given by Galbraith and Mao in 2003 and we prove that our scheme is existentially unforgeable under the Bilinear Diffie-Hellman assumption in the random oracle model. We also prove that it has the invisibility property under the Decisional Bilinear Diffie-Hellman assumption and we discuss about the efficiency of the scheme.

Keywords

ID-based cryptography undeniable signatures pairings provable security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Riyami, S.-S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Barreto, P.-S.-L.-M., Kim, H.-Y.: Fast hashing onto elliptic curves over fields of characteristic 3, eprint available at http://eprint.iacr.org/2001/098/
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. of the 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity Based Encryption From the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Boyar, J., Chaum, D., Damgård, I., Pedersen, T.: Convertible undeniable signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–208. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Boyen, X.: Multipurpose Identity-Based Signcryption. A Swiss Army Knife for Identity-Based Cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Chaum, D.: Zero-knowledge undeniable signatures. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  13. 13.
    Cheon, J.H., Lee, D.H.: Diffie-Hellman Problems and Bilinear Maps, eprint available at http://eprint.iacr.org/2002/117/
  14. 14.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Dupont, R., Enge, A.: Practical Non-Interactive Key Distribution Based on Pairings, available at http://eprint.iacr.org/2002/136
  16. 16.
    Damgård, I.B., Pedersen, T.P.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  18. 18.
    Fujioka, A., Okamoto, T., Ohta, K.: Interactive Bi-Proof Systems and undeniable signature schemes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 243–256. Springer, Heidelberg (1991)Google Scholar
  19. 19.
    Galbraith, S., Mao, W., Paterson, K.G.: RSA-based undeniable signatures for general moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Galbraith, S., Mao, W.: Invisibility and Anonymity of Undeniable and Confirmer Signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Gennaro, R., Krawczyk, H., Rabin, T.: RSA-based undeniable signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 132–149. Springer, Heidelberg (1997)Google Scholar
  22. 22.
    Goh, E.-J., Jarecki, S.: A Signature Scheme as Secure as the Diffie-Hellman Problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Guillou, L., Quisquater, J.-J.: A “Paradoxical” Identity-Based Signature Scheme Resulting From Zero-Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (1990)Google Scholar
  24. 24.
    Han, S., Yeung, K.Y., Wang, J.: Identity based confirmer signatures from pairings over elliptic curves. In: Proceedings of ACM conference on Electronic commerce, pp. 262–263 (2003)Google Scholar
  25. 25.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and Their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Katz, J., Wang, N.: Efficiency Improvements for Signature Schemes with Tight Security Reductions. To appear at ACM Conference on Computer and Communications Security (2003)Google Scholar
  28. 28.
    Libert, B., Quisquater, J.-J.: Identity Based Undeniable Signatures, extended version, eprint, available at http://eprint.iacr.org/2003/206
  29. 29.
    Michels, M., Stadler, M.: Efficient Convertible Undeniable Signature Schemes. In: Proc. of 4th AnnualWorkshop on Selected Areas in Cryptography, SAC 1997 (August 1997)Google Scholar
  30. 30.
    Okamoto, T.: Designated Confirmer Signatures and Public Key Encryption are Equivalent. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 61–74. Springer, Heidelberg (1994)Google Scholar
  31. 31.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Paterson, K.G.: ID-based signatures from pairings on elliptic curves, eprint, available at http://eprint.iacr.org/2002/004/
  33. 33.
    Pointcheval, D.: Self-Scrambling Anonymizers. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 259–275. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  34. 34.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  35. 35.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  36. 36.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Sympoium on Cryptography and Information Security (2000)Google Scholar
  37. 37.
    Shamir, A.: Identity Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  38. 38.
    Smart, N.P.: An identity based authenticated key agreement protocol based on the Weil pairing. Electronic Letters 38(13), 630–632 (2002)zbMATHCrossRefGoogle Scholar
  39. 39.
    Zhang, F., Kim, K.: ID-Based Blind Signature and Ring Signature from Pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Zhang, F., Safavi-Naini, R., Susilo, W.: Attack on Han et al.’s ID-based Confirmer (Undeniable). Signature at ACM-EC 2003 (2003), eprint available at http://eprint.iacr.org/2003/129/

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Benoît Libert
    • 1
  • Jean-Jacques Quisquater
    • 1
  1. 1.UCL Crypto GroupLouvain-La-NeuveBelgium

Personalised recommendations