Advertisement

A Fast Correlation Attack via Unequal Error Correcting LDPC Codes

  • Maneli Noorkami
  • Faramarz Fekri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)

Abstract

In this paper, an improved fast correlation attack on stream ciphers is presented. The proposed technique is based on the construction of an unequal error protecting LDPC code from the LFSR output sequence. The unequal error protection allows to achieve lower bit-error probability for initial bits of the LFSR in compared to the rest of the output bits. We show that constructing the unequal error protecting code has also the advantage of reducing the number of output bits involved in decoding to less than the available keystream output bits. Our decoding approach is based on combination of exhaustive search over a subset of information bits and a soft-decision iterative message passing decoding algorithm. We compare the performance of the proposed algorithm with the recent fast correlation attacks. Our results show that we can reduce the number of bits obtained by exhaustive search in half and still get better performance comparing to recent fast correlation attacks based on iterative decoding algorithm. Using the expected number of parity-check equations of certain weights, we find the lower bound on the number of information bits that needs to be obtained by the exhaustive search without compromising the performance.

Keywords

Stream ciphers fast correlation attacks linear feedback shift registers cryptanalysis LDPC codes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  2. 2.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Trans. on Information Theory IT-30, 776–780 (1984)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Golic, J., Salmasizadeh, M., Clark, A., Khodkar, A., Dawson, E.: Discrete optimisation and fast correlation attacks. In: Proceedings of Cryptography: Policy and Algorithms. International Conference, pp. 186–200 (1996)Google Scholar
  5. 5.
    Penzhorn, W., Kuhn, G.: Computation of low-weight parity checks for correlation attacks on stream ciphers. In: Proceedings of Cryptography and Coding. 5th IMA Conference, pp. 74–83 (1995)Google Scholar
  6. 6.
    Chepyzhov, V., Smeets, B.: On a fast correlation attack on certain stream ciphers. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 176–185. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Mihaljevic, M., Golic, J.: A fast iterative algorithm for a shift register initial state reconstruction given the noisy output sequence. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 165–185. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Johansson, T., Jonsson, F.: Improved fast correlation attacks on stream ciphers via convolutional codes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 347–362. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Johansson, T., Jonsson, F.: Fast correlation attacks based on turbo code techniques. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 181–197. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Chepyzhov, V., Johansson, T., Smeets, B.: A simple algorithm for fast correlation attacks on stream ciphers. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 181–195. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Jonsson, F.: Some results on fast correlation attacks. PhD thesis, Lund University (2002)Google Scholar
  12. 12.
    Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 573–588. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Mihaljevic, M., Fossorier, M., Imai, H.: A low-complexity and high performance algorithm for the fast correlation attack. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 196–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Mihaljevic, M., Fossorier, M., Imai, H.: Fast correlation attack algorithm with list decoding and an application. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 196–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: an algorithmic point of view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Kschischang, F., Frey, B., Loeliger, H.: Factor graphs and the sum-product algorithm. IEEE Trans. on Information Theory 47, 498–519 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Maneli Noorkami
    • 1
  • Faramarz Fekri
    • 1
  1. 1.Georgia Institute of TechnologyCenter for Signal and Image Processing, School of Electrical & Computer EngineeringAtlantaUSA

Personalised recommendations