Advertisement

Periodic Properties of Counter Assisted Stream Ciphers

  • Ove Scavenius
  • Martin Boesgaard
  • Thomas Pedersen
  • Jesper Christiansen
  • Vincent Rijmen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)

Abstract

This paper analyses periodic properties of counter assisted stream ciphers. In particular, we analyze constructions where the counter system also has the purpose of providing additional complexity. We then apply the results to the recently proposed stream cipher Rabbit, and increase the lower bound on the internal state period length from 2158 to 2215. With reasonable assumptions we illustrate that the period length of Rabbit is at least the period of the counter system, i.e. at least 2256-1. The investigations are related to a “mod 3” characteristic of Rabbit. Attacks based on this characteristic are discussed and found infeasible.

Keywords

Stream cipher period counter diversity degeneracy Rabbit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shelah, S., Tsaban, B.: Efficient linear feedback shift registers with maximal period. Finite Fields and their Applications 8, 256–267 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ekdahl, P., Johansson, T.: A New Version of the Stream Cipher SNOW. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 49–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Shamir, A., Tsaban, B.: Guaranteeing the Diversity of Number Generators. Information and Computation 171(2), 350–363 (2001), http://xxx.lanl.gov/abs/cs.CR/0112014 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Coppersmith, D., Halevi, S., Jutla, C.: Cryptanalysis of Stream Ciphers with Linear Masking. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 515. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rabbit: A New High-Performance Stream Cipher. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Flajolet, P., Odlyzko, A.M.: Random Mapping statistics. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Kelsey, J., Schneier, B., Wagner, D.: Mod n Cryptanalysis, with Applications against RC5P and M6. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 139–155. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    “mod n” Cryptanalysis of Rabbit, white paper, version 1.0 (2003), http://www.cryptico.com
  9. 9.
    Rijmen, V.: Analysis of Rabbit, unpublished report (2003), http://www.cryptico.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ove Scavenius
    • 1
  • Martin Boesgaard
    • 1
  • Thomas Pedersen
    • 1
  • Jesper Christiansen
    • 1
  • Vincent Rijmen
    • 2
  1. 1.CrypticoCopenhagenDenmark
  2. 2.CryptomathicLeuvenBelgium

Personalised recommendations