Skip to main content

Bit String Commitment Reductions with a Non-zero Rate

  • Conference paper
Book cover Topics in Cryptology – CT-RSA 2004 (CT-RSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2964))

Included in the following conference series:

  • 1006 Accesses

Abstract

We analyze a new class of primitives called weak commitments. We completely characterize when bit commitments can be reduced to these primitives. Also, we employ a new concept in cryptographic reductions, the rate of a reduction. We propose protocols achieving a nontrivial rate. We provide examples of how to implement these primitives based on oblivious transfer and on quantum mechanics. Using the theory here developed, some open problems on computationally secure quantum bit commitments are solved. Our reductions are information theoretically secure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Maure, U.: Generalized Privacy Amplification. IEEE Transaction on Information Theory 41(6), 1915–1923 (1995)

    Article  MATH  Google Scholar 

  2. Cachin, C.: On the Foundations of Oblivious Transfer. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 361–374. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Crepeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions. In: 29th Symp. on Found. of Computer Sci., pp. 42–52. IEEE, Los Alamitos (1988)

    Google Scholar 

  4. Crépeau, C.: Efficient Cryptographic Protocols Based on Noisy Channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)

    Google Scholar 

  5. Crepeau, C., Dumais, P., Mayers, D., Salvail, L.: Apparent Collapse of Quantum State and Computational Quantum Oblivious Transfer, pre-print available at http://crypto.cs.mcgill.ca/~crepeau/PS/subqmc-3.ps

  6. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Chichester (1991)

    Book  MATH  Google Scholar 

  7. Crepeau, C.: Efficient Cryptographic Protocols Based on Noisy Channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)

    Google Scholar 

  8. Damgård, I.B., Kilian, J., Salvail, L.: On the (Im)possibility of Basing Oblivious Transfer and Bit Commitment on Weakened Security Assumptions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 56. Springer, Heidelberg (1999)

    Google Scholar 

  9. Damgard, T., Pedersen, B.: Pfitzmann: Statistical Secrecy and Multi-Bit Commitments. IEEE Transactions on Information Theory 44(3), 1143–1151 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dumais, P., Mayers, D., Salvail, L.: Perfectly Concealing Quantum Bit Commitment from Any Quantum One-Way Permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Kilian, J.: Founding Cryptography on Oblivious Transfer. In: Proceedings of the 20th ACM Symposium on the Theory of Computing (1988)

    Google Scholar 

  12. Lo, H.K., Chau, H.F.: Is quantum Bit Commitment Really Possible? Physical Review Letters 78(17), 3410 (1997)

    Article  Google Scholar 

  13. Mayers, D.: The Trouble With Quantum Bit Commitment (March 1996), http://xxx.lanl.gov/abs/quant-ph/9603015

  14. Maurer, U., Wolf, S.: Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 351–368. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Naor, M.: Bit Commitment Using Pseudorandomness. J. of Cryptology 4, 151–158

    Google Scholar 

  16. Nascimento, A., Mueller-Quade, J., Imai, H.: Optimal Multi-Bit Commitment Reductions to Weak Commitments. In: ISIT 2002, p. 294 (2002)

    Google Scholar 

  17. Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes using concealing channels and a trusted initializer (pre-print)

    Google Scholar 

  18. Salvail, L.: Quantum Bit Commitment From a Physical Assumption. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998)

    Google Scholar 

  19. Stinson, D.: Cryptography: Theory and Practice. CRC Press, Florida (1995)

    MATH  Google Scholar 

  20. Wyner, A.D.: The WireTap Channel Bell System J., 54, 1355–1387 (1981)

    Google Scholar 

  21. Winter, A., Nascimento, H.: Imai, Commitment Capacity of Discrete Memoryless Channels, http://xxx.lanl.gov/abs/cs.CR/0304014

  22. Yao, A.: Security of Quantum Protocols Against Coherent Measurements. In: Proceedings of the 26th Annual ACM Symposium on the Theory of Computing (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nascimento, A.C.A., Mueller-Quade, J., Imai, H. (2004). Bit String Commitment Reductions with a Non-zero Rate. In: Okamoto, T. (eds) Topics in Cryptology – CT-RSA 2004. CT-RSA 2004. Lecture Notes in Computer Science, vol 2964. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24660-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24660-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20996-6

  • Online ISBN: 978-3-540-24660-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics