Advertisement

Bit String Commitment Reductions with a Non-zero Rate

  • Anderson C. A. Nascimento
  • Joern Mueller-Quade
  • Hideki Imai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)

Abstract

We analyze a new class of primitives called weak commitments. We completely characterize when bit commitments can be reduced to these primitives. Also, we employ a new concept in cryptographic reductions, the rate of a reduction. We propose protocols achieving a nontrivial rate. We provide examples of how to implement these primitives based on oblivious transfer and on quantum mechanics. Using the theory here developed, some open problems on computationally secure quantum bit commitments are solved. Our reductions are information theoretically secure.

Keywords

Secret Data Security Parameter Commitment Scheme Oblivious Transfer Random Linear Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Maure, U.: Generalized Privacy Amplification. IEEE Transaction on Information Theory 41(6), 1915–1923 (1995)zbMATHCrossRefGoogle Scholar
  2. 2.
    Cachin, C.: On the Foundations of Oblivious Transfer. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 361–374. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Crepeau, C., Kilian, J.: Achieving oblivious transfer using weakened security assumptions. In: 29th Symp. on Found. of Computer Sci., pp. 42–52. IEEE, Los Alamitos (1988)Google Scholar
  4. 4.
    Crépeau, C.: Efficient Cryptographic Protocols Based on Noisy Channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Crepeau, C., Dumais, P., Mayers, D., Salvail, L.: Apparent Collapse of Quantum State and Computational Quantum Oblivious Transfer, pre-print available at http://crypto.cs.mcgill.ca/~crepeau/PS/subqmc-3.ps
  6. 6.
    Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Chichester (1991)zbMATHCrossRefGoogle Scholar
  7. 7.
    Crepeau, C.: Efficient Cryptographic Protocols Based on Noisy Channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Damgård, I.B., Kilian, J., Salvail, L.: On the (Im)possibility of Basing Oblivious Transfer and Bit Commitment on Weakened Security Assumptions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 56. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Damgard, T., Pedersen, B.: Pfitzmann: Statistical Secrecy and Multi-Bit Commitments. IEEE Transactions on Information Theory 44(3), 1143–1151 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dumais, P., Mayers, D., Salvail, L.: Perfectly Concealing Quantum Bit Commitment from Any Quantum One-Way Permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Kilian, J.: Founding Cryptography on Oblivious Transfer. In: Proceedings of the 20th ACM Symposium on the Theory of Computing (1988)Google Scholar
  12. 12.
    Lo, H.K., Chau, H.F.: Is quantum Bit Commitment Really Possible? Physical Review Letters 78(17), 3410 (1997)CrossRefGoogle Scholar
  13. 13.
    Mayers, D.: The Trouble With Quantum Bit Commitment (March 1996), http://xxx.lanl.gov/abs/quant-ph/9603015
  14. 14.
    Maurer, U., Wolf, S.: Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 351–368. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Naor, M.: Bit Commitment Using Pseudorandomness. J. of Cryptology 4, 151–158Google Scholar
  16. 16.
    Nascimento, A., Mueller-Quade, J., Imai, H.: Optimal Multi-Bit Commitment Reductions to Weak Commitments. In: ISIT 2002, p. 294 (2002)Google Scholar
  17. 17.
    Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes using concealing channels and a trusted initializer (pre-print)Google Scholar
  18. 18.
    Salvail, L.: Quantum Bit Commitment From a Physical Assumption. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Stinson, D.: Cryptography: Theory and Practice. CRC Press, Florida (1995)zbMATHGoogle Scholar
  20. 20.
    Wyner, A.D.: The WireTap Channel Bell System J., 54, 1355–1387 (1981)Google Scholar
  21. 21.
    Winter, A., Nascimento, H.: Imai, Commitment Capacity of Discrete Memoryless Channels, http://xxx.lanl.gov/abs/cs.CR/0304014
  22. 22.
    Yao, A.: Security of Quantum Protocols Against Coherent Measurements. In: Proceedings of the 26th Annual ACM Symposium on the Theory of Computing (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Anderson C. A. Nascimento
    • 1
  • Joern Mueller-Quade
    • 2
  • Hideki Imai
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  2. 2.Institut fuer Algorithmen und Kognitive SystemeUniversitaet KarlsruheKarlsruheGermany

Personalised recommendations