Online Encryption Schemes: New Security Notions and Constructions

  • Alexandra Boldyreva
  • Nut Taesombut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2964)


We investigate new strong security notions for on-line symmetric encryption schemes, which are the schemes whose encryption and decryption algorithms operate “on-the-fly” and in one pass, namely can compute and return an output block given only the key, the current input block and the previous input and output blocks. We define the strongest achievable notion of privacy which takes into account both chosen-ciphertext attacks and the recently introduced blockwise-adaptive [15,12] attacks. We show that all the schemes shown to be secure against blockwise-adaptive chosen-plaintext attacks are subject to blockwise-adaptive chosen-ciphertext attacks. We present an on-line encryption scheme which is provably secure under our notion. It uses any strong on-line cipher, the primitive introduced in [1]. We finally discuss the notion of authenticated on-line schemes and provide a secure construction.


Encryption Scheme Block Cipher Decryption Algorithm Encryption Mode Security Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: Online Ciphers and the Hash-CBC Constructions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 292. Springer, Heidelberg (2001), CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption: Analysis of the DES Modes of Operation. In: Proc. of the 38th Symposium on Foundations of Computer Science, IEEE, Los Alamitos (1997)Google Scholar
  3. 3.
    Bellare, M., Kilian, J., Rogaway, P.: The Security of Cipher Block Chaining. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 531. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 197. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Blaze, M.: High-bandwidth Encryption with Low-bandwidth Smart Cards. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Blaze, M., Feigenbaum, J., Naor, M.: A Formal Treatment of Remotely Keyed Encryption. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 251–265. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Boldyreva, A., Taesombut, N.: Online Encryption Schemes: New Security Notions and Constructions, Full version of this paper, Available at
  9. 9.
    Dodis, Y., An, J.H.: Concealment and Its Applications to Authenticated Encryption. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Gligor, V., Donescu, P.: Fast Encryption and Authentication: XCBC Encryption and XECB Authenticated Modes. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, p. 92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-line Encryption. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Fouque, P.-A., Martinet, G., Poupard, G.: Practical Symmetric On-line Encryption. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 362–375. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Jakobsson, M., Stern, J., Yung, M.: Scramble All, Encrypt Small. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, p. 95. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Joux, A., Martinet, G., Valette, F.: Blockwise-adaptive attackers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 17. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Jutla, C.: Encryption Modes With Almost Free Message Integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 529. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Lucks, S.: On the Security of Remotely Keyed Encryption. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 219–229. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    NIST. FIPS PUB81 - DES Modes of Operation (December 1980)Google Scholar
  19. 19.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption. In: Eighth ACM Conference on Computer and Communications Security (CCS-8), ACM Press, New York (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alexandra Boldyreva
    • 1
  • Nut Taesombut
    • 1
  1. 1.Dept. of Computer Science & EngineeringUniversity of California at San DiegoLa JollaUSA

Personalised recommendations