Browsing Search Results via Formal Concept Analysis: Automatic Selection of Attributes

  • Juan M. Cigarrán
  • Julio Gonzalo
  • Anselmo Peñas
  • Felisa Verdejo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


This paper presents the JBraindead Information Retrieval System, which combines a free-text search engine with online Formal Concept Analysis to organize the results of a query. Unlike most applications of Conceptual Clustering to Information Retrieval, JBraindead is not restricted to specific domains, and does not use manually assigned descriptors for documents nor domain specific thesauruses. Given the ranked list of documents from a search, the system dynamically decides which are the most appropriate attributes for the set of documents and generates a conceptual lattice on the fly. This paper focuses on the automatic selection of attributes: first, we propose a number of measures to evaluate the quality of a conceptual lattice for the task, and then we use the proposed measures to compare a number of strategies for the automatic selection of attributes. The results show that conceptual lattices can be very useful to group relevant information in free-text search tasks. The best results are obtained with a weighting formula based on the automatic extraction of terminology for thesaurus building, as compared to an Okapi weighting formula.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpineto, C., Romano, G.: A lattice Conceptual Clustering System and Its Application to Browsing Retrieval. Machine Learning 24, 95–122 (1996)Google Scholar
  2. 2.
    Cole, R,J.: The management and visualization of document collections using Formal Concept Analysis Ph. D. Thesis, Griffith University (2000) Google Scholar
  3. 3.
    Cole, R.J., Eklund, P. W.: Application of Formal Concept Analysis to Information Retrieval using a Hierarchically structured thesaurus Google Scholar
  4. 4.
    Cole, R.J., Eklund, P.W.: A Knowledge Representation for Information Filtering Using Formal Concept Analysis. Linkoping Electronic Articles in Computer and Information Science 5(5) (2000)Google Scholar
  5. 5.
    Cole, R.J., Eklund, P.W.: Scalability in Formal Concept Analysis. Computational Intelligence 15(1), 11–27 (1999)CrossRefGoogle Scholar
  6. 6.
    Cole, R.J., Eklund, P., Stumme, G.: Document Retrieval for Email Search and Discovery using Formal Concept Analysis. Applied Artificial Intelligence 17(3) (2003)Google Scholar
  7. 7.
    Cole, R., Eklund, P., Amardeilh, F.: Browsing Semi-structured Texts on the web using Formal Concept Analysis. In: Web Intelligence (2003) Google Scholar
  8. 8.
    Eklund, P., Cole, R.: Structured Ontology and IR for Email Search and Discovery. In: Proceedings of the Sixth Australasian Document Computing Symposium, Coffs Harbour, Australia (2001)Google Scholar
  9. 9.
    Fernández-Manjón, B., Cigarrán, J., Navarro, A., Fernández-Valmayor, A.: Applying Formal Concept Analysis to Domain Modeling in an Intelligent Help System. In: Proceedings of Information Technology and Knowledge Systems. 5th IFIP World Computer Congress, Vienna-Budapest (1998)Google Scholar
  10. 10.
    Hotho, A., Stumme, G.: Conceptual Clustering of Text Clusters. In: Proceedings of the FGML Workshop, Hannover (2002)Google Scholar
  11. 11.
    Godin, R., Missaoui, R., April, A.: Experimental Comparison of navigation in a Galois lattice with conventional Information Retrieval methods. Int. J. Man-Machine Studies 38, 747–767 (1993)CrossRefGoogle Scholar
  12. 12.
    Peñas, A., Verdejo, F., Gonzalo, J.: Corpus-Based Terminology Extraction applied to Information Access. In: Proceedings of Corpus Linguistics 2001, Lancaster University (2001)Google Scholar
  13. 13.
    Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.): CLEF 2001. LNCS, vol. 2406. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Priss, U.: Lattice-based Information Retrieval. Knowledge Organization 27(3), 132–142 (2000)Google Scholar
  15. 15.
    Savoy, J.: Report on CLEF 2002 experiments: Combining multiple sources of evidence. In: Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.) Advances in Cross-Language Evaluation Retrieval, Springer, Berlin (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Juan M. Cigarrán
    • 1
  • Julio Gonzalo
    • 1
  • Anselmo Peñas
    • 1
  • Felisa Verdejo
    • 1
  1. 1.Departamento de Lenguajes y Sistemas Informáticos, E.T.S.I. InformáticaUniversidad Nacional de Educación a Distancia (UNED) 

Personalised recommendations