Concept Lattices for Information Visualization: Can Novices Read Line-Diagrams?

  • Peter Eklund
  • Jon Ducrou
  • Peter Brawn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


Mail-Sleuth is a personal productivity tool that allows individuals to manage email and visualize its contents using line diagrams. Based on earlier work on the Conceptual Email Manager (Cem), a major hypothesis of Mail-Sleuth is that novices to Formal Concept Analysis can read a lattice diagram. Since there is no empirical evidence for this in the Formal Concept Analysis literature this paper is a first attempt to test this hypothesis by following a user-centred design and evaluation process. Our results suggest that, with some adjustments, novice users can read line diagrams without specialized background in mathematics or computer science. This paper describes the process and outcomes based on usability testing and explains the evolution of the Mail-Sleuth design responding to the evaluation at the Access Testing Centre.


Conceptual Structure Concept Lattice Formal Concept Analysis Information Visualization Hasse Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, P.: Multi-dimensional representations of conceptual hierarchies. In: Conceptual Structures– Extracting and Representing Semantics contributions to ICCS 2001, pp. 145–158 (2001)Google Scholar
  2. 2.
    Burmeister, P.: Formal Concept analysis with ConImp: Introduction to Basic Features, TU Darmstdt, Germany, Tech Report (1996),
  3. 3.
    Carpineto, C., Romano, G.: ULYSSES: A Lattice-based Multiple Interaction Strategy Retrieval Interface. In: Blumenthal, B., Gornostaev, J., Unger, C. (eds.) EWHCI 1995. LNCS, vol. 1015, Springer, Heidelberg (1995)Google Scholar
  4. 4.
    Cole, R., Eklund, P.: Scalability in Formal Concept Analysis. Computational Intelligence 15(1), 11–27 (1999)CrossRefGoogle Scholar
  5. 5.
    Cole, R., Eklund, P.: Analyzing an Email Collection using Formal Concept Analysis. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 309–315. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Cole, R., Stumme, G.: CEM: A Conceptual Email Manager. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 438–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Cole, R., Eklund, P., Stumme, G.: CEM — A Program for Visualization and Discovery in Email. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 367–374. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Cole, R., Eklund, P., Amardeilh, F.: Browsing Semi-Structured Texts on the Web Using Formal Concept Analysis. In: Zhang (ed.) Web Intelligence, Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Duquenne, V.: Lattice structures in data analysis. Theoretical Computer Science 217(2), 407–436 (1999)zbMATHCrossRefGoogle Scholar
  10. 10.
    Eklund, P., Groh, B., Stumme, G., Wille, R.: A Contextual-Logic Extension of TOSCANA. In: International Conference on Conceptual Structures, pp. 453–467 (2000),
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  12. 12.
    Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38, 747–767 (1993)CrossRefGoogle Scholar
  13. 13.
    Groh, B.: A Contextual-Logic Framework Based on Relational Power Context Families, PhD Thesis, Griffith University (2002),
  14. 14.
    Hereth, J., Stumme, G., Wille, R., Will, U.: Conceptual Knowledge Discovery and Data Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 421–437. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Horvitz, E.: Uncertainty, Action and Interaction. In: pursuit of Mixed-initiative Computing Intelligent Systems, September, 1999, pp. 17–20. IEEE, Los Alamitos (1999),
  16. 16.
    Kim, M., Compton, P.: Incremental Development of Domain Specific Document Retrieval Systems. In: KCAP 2001, Workshop on Knowledge Mark-up and Semantic Annotation, pp. 69–77 (2001)Google Scholar
  17. 17.
    Norman, D.A., Draper, S.W.: User-centered System Design. Lawrence Erlbaum, Hillsdale (1986)Google Scholar
  18. 18.
    Prediger, S., Wille, R.: The Lattice of Concept Graphs of a Relationally Scaled Context. In: International Conference on Conceptual Structures, pp. 401–414 (1999),
  19. 19.
    Qian, Y., Feijs, L.: Step-wise concept lattice navigation. In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures contributions to ICCS 2003, pp. 255–267. Shaker Verlag, Aachen (2003)Google Scholar
  20. 20.
    Rock, T., Wille, R.: Ein TOSCANA -Erkundungssystem zur Literatursuche. In: Stumme, G. (Hrsg.) Begriffliche Wissensverarbeitung. Methoden und Anwendungen, pp. 239–253. Springer, Berlin (2000)Google Scholar
  21. 21.
    Tilley, T.: Formal concept analysis applications to requirements engineering and design, PhD Thesis, The University of Queensland (2003)Google Scholar
  22. 22.
    Tilley, T., Cole, R., Becker, P., Eklund, P.: A Survey of Formal Concept Analysis Support for software engineering activities. In: Stumme, G., Ganter, G. (eds.) Proceedings of the First International Conference on Formal Concept Analysis - ICFCA 2003, February 2003, Springer, Heidelberg (2003) (to appear)Google Scholar
  23. 23.
    Valchev, P., Grosser, D., Roume, C., Hacene, M.: Galicia: an open platform for lattices. In: Ganter, B., de Moor, A. (eds.) Using conceptual Structures, contributions to ICCS 2003, pp. 241–254. Shaker Verlag, Aachen (2003)Google Scholar
  24. 24.
    Vogt, F., Wachter, C., Wille, R.: Data Analysis based on a Conceptual File, Classification. In: Bock, H.-H., Lenski, W., Ihm, P. (eds.) Data Analysis and Knowledge Organization, pp. 131–140. Springer, Berlin (1991)Google Scholar
  25. 25.
    Vogt, F., Wille, R.: TOSCANA: A Graphical Tool for Analyzing and Exploring Data. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 226–233. Springer, Heidelberg (1995)Google Scholar
  26. 26.
    Wille, R.: Conceptual Landscapes of Knowledge: A Pragmatic Paradigm for Knowledge Processing. In: Gaul, W., Locarek-Junge, H. (eds.) Classification in the Information Age, Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Wille, R.: Lattices in data analyse: how to draw them with a computer. In: Rival, I. (ed.) Algorithms and order. Kluwer, pp. 33–58. Kluwer, Dordrecht (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Peter Eklund
    • 1
  • Jon Ducrou
    • 2
  • Peter Brawn
    • 3
  1. 1.School of Information Technology and Computer ScienceThe University of Wollongong
  2. 2.Email Analysis Pty LtdThe University of WollongongAustralia
  3. 3.Access Testing CentreCrows NestAustralia

Personalised recommendations