Advertisement

QuDA: Applying Formal Concept Analysis in a Data Mining Environment

  • Peter A. Grigoriev
  • Serhiy A. Yevtushenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

This contribution contains a report on using FCA technologies in a data mining environment QuDA. We also show how “scaling” capabilities of QuDA can be used to transform real-world datasets into formal contexts.

Keywords

Association Rule Attribute Type Association Rule Mining Concept Lattice Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AIS93 .
    Agrawal, R., Imielinsky, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 International Conference on Managementof Data (SIGMOD 1993), pp. 207– 216 (1993)Google Scholar
  2. ARM.
  3. BM98.
    Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  4. Fin91.
    Finn, V.K.: Plausible reasoning in intelligent systems of JSM-type. Itogi Nauki i Tekhniki, ser. Informatika (15), 54–101 (1991) (in Russian)Google Scholar
  5. GK00.
    Ganter, B., Kuznetsov, S.O.: Formalizing hypotheses with concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 342–356. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. GK01.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. GMA95.
    Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms based on galois lattices. Computation Intelligence 11(2), 246–267 (1995)CrossRefGoogle Scholar
  8. Gue90.
    Guenoche, A.: Construction du treillis de galois d’une relation binaire. Math. Inf. Sci. Hum. 109, 41–53 (1990)zbMATHMathSciNetGoogle Scholar
  9. GW99.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  10. GYG03.
    Grigoriev, P., Yevtushenko, S., Grieser, G.: QuDA, a data miners’ discovery environment. Technical Report AIDA–03–06, FG Intellektik, FB Informatik, Technische Universität Darmstadt (September 2003), http://www.intellektik.informatik.tu-darmstadt.de/~peter/QuDA.pdf
  11. Klo02a.
    Kloesgen, W.: Deviation analysis. In: Kloesgen, W., Zytkow, J.M. (eds.) Handbook of data mining and Knowledge Discovery in Databases, pp. 344–360. Oxford University Press, Oxford (2002)Google Scholar
  12. Klo02b.
    Kloesgen, W.: Subgroup patterns. In: Kloesgen, W., Zytkow, J.M. (eds.) Handbook of data mining and Knowledge Discovery in Databases, pp. 47–50. Oxford University Press, Oxford (2002)Google Scholar
  13. KO01.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. In: Proc. of ICCS 2001 - Int’l Workshop On Concept Lattices Based KDD, pp. 35–47 (2001)Google Scholar
  14. Lux93.
    Luxenberger, M.: Implikationen, Abhängigkeiten und Galois Abbildungen. PhD thesis, Technische Hochschule Darmstadt (1993)Google Scholar
  15. Mit97.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  16. Nav.
    . Homepage of NaviCon, http://www.navicon.de
  17. Nor78 .
    Norris, E.M.: An algorithm for computing the maximal rectangles in a binary relation. Revue Roumanie de Mathématiques Pures et Appliquëes 23(2), 243–250 (1978)zbMATHMathSciNetGoogle Scholar
  18. NR99.
    Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Information Processing Letters 71, 199–204 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. PBTL98.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning closed itemset lattices for association rules. In: Proceedings of the BDA French Conference on Advanced Databases, pp. 177–196 (1998)Google Scholar
  20. Pis.
    Pissaro system – picturing interactively statistically sensible association rules reporting overviews, http://stats.math.uni-augsburg.de/Pissarro/
  21. STB+02.
    Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept lattices with titanic. Data Knowledge Engineering 42(2), 189–222 (2002)zbMATHCrossRefGoogle Scholar
  22. Yev00.
    Yevtushenko, S.A.: The research and development of the algorithms for the concept lattices construction. Master’s thesis, National Technical University of Ukraine “KPI’ (2000) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Peter A. Grigoriev
    • 1
  • Serhiy A. Yevtushenko
    • 1
  1. 1.Technische Universität Darmstadt (TUD)Germany

Personalised recommendations