The Power of Peircean Algebraic Logic (PAL)

  • Joachim Hereth Correia
  • Reinhard Pöschel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


The existential graphs devised by Charles S. Peirce can be understood as an approach to represent and to work with relational structures long before the manifestation of relational algebras as known today in modern mathematics. Robert Burch proposed in [Bur91] an algebraization of the existential graphs and called it the Peircean Algebraic Logic (PAL). In this paper, we show that the expressive power of PAL is equivalent to the expressive power of Krasner-algebras (which extend relational algebras). Therefore, from the mathematical point of view these graphs can be considered as a two-dimensional representation language for first-order formulas. Furthermore, we investigate the special properties of the teridentity in this framework and Peirce’s thesis, that to build all relations out of smaller ones we need at least a relation of arity three (for instance, the teridentity itself).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Arn01]
    Arnold, M.: Einführung in die kontextuelle Relationenlogik. Diplomarbeit, Technische Universität Darmstadt (2001)Google Scholar
  2. [Bur91]
    Burch, R.W.: A Peircean Reduction Thesis: The Foundations of Topological Logic. Texas Tech University Press (1991)Google Scholar
  3. [Her81]
    Herzberger, H.G.: Peirce’s Remarkable Theorem. In: Sumner, L.W., Slater, J.G., Wilson, F. (eds.) Pragmatism and Purpose: Essays, Presented to Thomas A. Goudge, University of Toronto Press, Toronto (1981)Google Scholar
  4. [HerP]
    Hereth Correia, J., Pöschel, R.: Peircean Algebraic Logic and Relational Clones (manuscript in preparation)Google Scholar
  5. [Pol02]
    Pollandt, S.: Relation graphs: a structure for representing relations in contextual logic of relations. In: Priss, U., Corbett, D., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 34–47. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. [Pös03]
    Pöschel, R.: Galois connections for operations and relations. In: Denecke, K., Erné, M., Wismath, S. (eds.) Galois connections and applications, Kluwer, Dordrecht (2003) (to appear)Google Scholar
  7. [PösK79]
    Pöschel, R., Kalužnin, L.: Funktionen- und Relationenalgebren, Bd. 67. Deutscher Verlag derWissenschaften/Birkhäuser Verlag, Berlin/Basel (1979)Google Scholar
  8. [Sow84]
    Sowa, J.F.: Conceptual structures: Information processing in mind and machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  9. [Sow92]
    Sowa, J.: Conceptual graphs summary. In: Nagle, T., Nagle, J., Gerholz, L., Eklund, P. (eds.) Conceptual structures: Current Research and Practice, Ellis Horwood, pp. 3–52 (1992)Google Scholar
  10. [Tar41]
    Tarski, A.: On the calculus of relations. J. Symbolic Logic 6, 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Wil00]
    Wille, R.: Lecture notes on Contextual Logic of Relations. Darmstadt University of Technology (2000) (preprint)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joachim Hereth Correia
    • 1
  • Reinhard Pöschel
    • 2
  1. 1.Department of MathematicsDarmstadt University of TechnologyDarmstadtGermany
  2. 2.Department of Mathematics, Institute for AlgebraDresden University of TechnologyDresdenGermany

Personalised recommendations