Protoconcept Graphs: The Lattice of Conceptual Contents

  • Joachim Hereth Correia
  • Julia Klinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


Protoconcept graphs are part of Contextual Judgment Logic. Generalizing the well-developed theory of concept graphs, they express judgments with a negation on the level of concepts and relations by representing information given in a power context family in a rhetorically structured way. The conceptual content of a protoconcept graph is understood as the information which is represented in the graph directly, enlarged by the information deducible from it by protoconcept implications of the power context family. The main result of this paper is that conceptual contents of protoconcept graphs of a given power context family can be derived as extents of the so-called conceptual information context of the power context family, thus a generalization of the Basic Theorem on \(\overrightarrow{{\mathbb K}}-\)Conceptual Contents in [Wi03].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Br94]
    Brandom, R.B.: Making it explicit. Reasoning, Representing, and Discursive Commitment. Harvard University Press, Cambridge (1994)Google Scholar
  2. [Da03a]
    Dau, F.: Concept Graphs without Negations: Standardmodels and Standardgraphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 243–256. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. [Da03b]
    Dau, F.: The Logic System of Concept Graphs with Negation. LNCS (LNAI), vol. 2892. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  4. [Da04]
    Dau, F.: Background Knowledge in Concept Graphs. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 156–171. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [DK03]
    Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic. FB4-Preprint, TU Darmstadt (2003)Google Scholar
  6. [EGSW00]
    Eklund, P., Groh, B., Stumme, G., Wille, R.: A Contextual-Logic Extension of Toscana. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 453–467. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  8. [Pr98]
    Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Shaker Verlag, Aachen (1998)zbMATHGoogle Scholar
  9. [PW99]
    Prediger, S., Wille, R.: The Lattice of Concept Graphs of a Relationally Scaled Context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. [SW03]
    Schoolmann, L., Wille, R.: Concept Graphs with Subdivision: a Semantic Approach. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 271–281. Springer, Heidelberg (2002)Google Scholar
  11. [So84]
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Adison-Wesley, Reading (1984)zbMATHGoogle Scholar
  12. [So92]
    Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund, P.W. (eds.) Conceptual Structures: Current Research and Practice, pp. 3–51. Ellis Horwood (1992)Google Scholar
  13. [VW03]
    Vormbrock, B., Wille, R.: Semiconcept and Protoconcept Algebras: The Basic Theorems. FB4-Preprint, TU Darmstadt, (2003) Google Scholar
  14. [Wi97]
    Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. [Wi00a]
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 317–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. [Wi00b]
    Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS, pp. 256–276. Shaker, Aachen (2000)Google Scholar
  17. [Wi01]
    Wille, R.: Boolean Judgment Logic. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 115–128. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. [Wi02]
    Wille, R.: Existential Graphs of Power Context Families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 382–396. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. [Wi03]
    Wille, R.: Conceptual Content as Information - Basics for Contextual Judgment Logic. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joachim Hereth Correia
    • 1
  • Julia Klinger
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations