Advertisement

A First Step towards Protoconcept Exploration

  • Björn Vormbrock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

Protoconcept exploration is developed as a knowledge acquisition tool for exploring the structure of protoconcept algebras similar to concept exploration for concept lattices. In this paper first results are presented. In particular, an algorithm is introduced that interactively determines the finitely generated subalgebra of a protoconcept algebra. Although it creates a redundant set of questions it shows clearly which information from the user is needed and it serves as a basis for a future, optimized algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. [Gr68]
    Grätzer, G.: Universal Algebra. van Nostrand, Princeton (1968)Google Scholar
  3. [HLSW00]
    Herrman, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of Semiconcepts and Double Boolean Algebras. In: Contributions to General Algebra 13, pp. 175–188. Verlag Johannes Heyn, Klagenfurt (2000)Google Scholar
  4. [KV03]
    Klinger, J., Vormbrock, B.: Contextual Boolean Logic: How did it develop? In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures. Contributions to ICCS 2003, pp. 143–156. Shaker, Aachen (2003)Google Scholar
  5. [St97]
    Stumme, G.: Concept Exploration. Knowledge Acquisition in Conceptual Knowledge Systems. Shaker, Aachen (1997)zbMATHGoogle Scholar
  6. [Vo03]
    Vormbrock, B.: Congruence Relations on Double Boolean Algebras. FB4- Preprint 2287, TU Darmstadt (2003)Google Scholar
  7. [VW03]
    Vormbrock, B., Wille, R.: Semiconcept and Protoconcept Algebras: The Basic Theorems. FB4-Preprint, TU Darmstadt (2003) Google Scholar
  8. [Wi00a]
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 317–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. [Wi00b]
    Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS, pp. 265–276. Shaker, Aachen (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Björn Vormbrock
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations