Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies

  • Philipp Cimiano
  • Andreas Hotho
  • Gerd Stumme
  • Julien Tane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.


Formal Concept Description Logic Conceptual Structure Concept Lattice Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The ToscanaJ Project: An open-source reimplementation of Toscana,
  2. 2.
    Baader, F.: Computing a minimal representation of the subsumption lattice of all conjunctions of concept defined in a terminology. In: Ellis, G., Levinson, R.A., Fall, A., Dahl, V. (eds.) Proc. Intl. KRUSE Symposium, Santa Cruz, August 11–13, pp. 168–178. UCSC (1995)Google Scholar
  3. 3.
    Basili, R., Pazienza, M.T., Velardi, P.: Hierarchical clustering of verbs. In: Proceedings of the Workshop on Acquisition of Lexical Knowledge from Text (1993)Google Scholar
  4. 4.
    Bisson, G., Nedellec, C., Canamero, L.: Designing clustering methods for ontology building - The Mo’K workbench. In: Proceedings of the ECAI Ontology Learning Workshop (2000)Google Scholar
  5. 5.
    Brewster, C., Ciravegna, F., Wilks, Y.: Background and foreground knowledge in dynamic ontology construction. In: Proceedings of the SIGIR Semantic Web Workshop (2003)Google Scholar
  6. 6.
    Caraballo, S.A.: Automatic construction of a hypernym-labeled noun hierarchy from text. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguists, pp. 120–126 (1999)Google Scholar
  7. 7.
    Carpineto, C., Romano, G.: Galois: An order-theoretic approach to conceptual clustering. In: Machine Learning. Proc. ICML 1993, pp. 33–40. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  8. 8.
    Chalupsky, H.: OntoMorph: A translation system for symbolic knowledge. In: Proc. 7th Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), Breckenridge, Colorado, USA, April 2000, pp. 471–482 (2000)Google Scholar
  9. 9.
    Charniak, E., Berland, M.: Finding parts in very large corpora. In: Proceedings of the 37th Annual Meeting of the ACL, pp. 57–64 (1999)Google Scholar
  10. 10.
    Chaudron, L., Maille, N.: Generalized formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 357–370. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Cimiano, P., Staab, S., Tane, J.: Automatic acquisition of taxonomies from text: FCA meets NLP. In: Proceedings of the InternationalWorkshop on Adaptive Text Extraction and Mining (2003)Google Scholar
  12. 12.
    Cimiano, P., Staab, S., Tane, J.: Deriving concept hierarchies from text by smooth formal concept analysis. In: Proceedings of the GIWorkshop Lehren Lernen -Wissen - Adaptivität, LLWA (2003)Google Scholar
  13. 13.
    Clark, H.H.: Arenas of Language Use, chapter Common Ground and Language Use, Definite Reference and Mutual Knowledge. CSLI, Stanford (1992)Google Scholar
  14. 14.
    Cole, R., Eklund, P.: Browsing semi-structured web texts using formal concept analysis. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 319–332. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Cole, R., Eklund, P., Stumme, G.: Document retrieval for email search and discovery using formal concept analysis. Journal of Applied Artificial Intelligence 17(3), 257–280 (2003)CrossRefGoogle Scholar
  16. 16.
    Cole, R., Stumme, G.: CEM- a Conceptual Email Manager. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 438–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41(6), 391–407 (1990)CrossRefGoogle Scholar
  18. 18.
    Bozsak, E., et al.: KAON – Towards a Large Scale Semantic Web. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 304–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 371–384. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Deutsches Institut für Normung. Begriffe und benennungen – allgemeine grundsätze. din 2330 (1993)Google Scholar
  21. 21.
    Ganter, B., Stumme, G.: Creation and merging of ontology top-levels. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 131–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Gast, P.: Begriffliche Strukturen mehrwertiger Multikontexte. Master’s thesis, FB Mathematik, TU Darmstadt (1996)Google Scholar
  23. 23.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. In: Formal Analysis in Conceptual Analysis and Knowledge Representation, Kluwer, Dordrecht (1993)Google Scholar
  24. 24.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th International Conference on Computational Linguistics (1992)Google Scholar
  25. 25.
    Hereth, J., Stumme, G.: Reverse pivoting in conceptual information systemsGoogle Scholar
  26. 26.
    Hesse, W.: Ontologie(n) - Aktuelles Schlagwort. Informatik Spektrum 25(6), 477–480 (2002)CrossRefGoogle Scholar
  27. 27.
    Hindle, D.: Noun classification from predicate-argument structures. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp. 268–275 (1990)Google Scholar
  28. 28.
    Hotho, A.: Clustern mit Hintergrundwissen. PhD thesis, Institute AIFB, University of Karlsruhe (2004)Google Scholar
  29. 29.
    Hotho, A., Staab, S., Stumme, G.: Text clustering based on background knowledge. Technical report, University of Karlsruhe, Institute AIFB, 36 pages (2003)Google Scholar
  30. 30.
    Hotho, A., Staab, S., Stumme, G.: Explaining text clustering results using semantic structures. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 217–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Hovy, E.: Combining and standardizing large-scale, practical ontologies for machine translation and other uses. In: Proc. 1st Intl. Conf. on Language Resources and Evaluation, Granada, Spain (May 1998)Google Scholar
  32. 32.
    Jones, K.: View mail users manual (1999),
  33. 33.
    Karypis, G., Han, E.-H.: Fast supervised dimensionality reduction algorithm with applications to document categorization and retrieval. In: Proceedings of CIKM 2000, pp. 12–19. ACM Press, NewYork (2000)CrossRefGoogle Scholar
  34. 34.
    Kent, R.E., Neuss, C.: Creating a web analysis and visualization environment. Computer Networks and ISDN Systems 28(1/2), 109–117 (1995)CrossRefGoogle Scholar
  35. 35.
    McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: Proc. 7th Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), Breckenridge, Colorado, USA, April 2000, pp. 483–493 (2000)Google Scholar
  36. 36.
    Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 423–441. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  37. 37.
    Fridman Noy, N., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: Proc. 17th Natl. Conf. on Artificial Intelligence (AAAI 2000), pp. 450–455, Austin, TX, (July/August 2000)Google Scholar
  38. 38.
    Pereira, F., Tishby, N., Lee, L.: Distributional clustering of english words. In: Proceedings of the 31st Annual Meeting of the Association for Computational Linguistics, pp. 183–190 (1993)Google Scholar
  39. 39.
    Petersen, W.: A set-theoretical approach for the induction of inheritance hierarchies. Electronic Notes in Theoretical Computer Science 51 (2002)Google Scholar
  40. 40.
    Prediger, S.: Logical scaling in formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  41. 41.
    Prediger, S., Stumme, G.: Theory-driven logical scaling. conceptual information systems meet description logics. In: Franconi, E., et al. (eds.) Proc. 6th Intl. Workshop Knowledge Representation Meets Databases, Heidelberg, CEURWorkshop Proc.,Google Scholar
  42. 42.
    Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  43. 43.
    Priss, U.: Linguistic applications of formal concept analysis. Presentation at the First International Conference on Formal Concept Analysis, Darmstadt (2003)Google Scholar
  44. 44.
    Richards, D., Compton, P.: Combining formal concept analysis and ripple down rules to support reuse. In: Proc. 9th Intl. Conf. on Software Engineering and Knowledge Engineering (SEKE 1997), Springer, Heidelberg (1997)Google Scholar
  45. 45.
    Schmitz, C., Staab, S., Studer, R., Stumme, G., Tane, J.: Accessing distributed learning repositories through a courseware watchdog. In: Driscoll, M., Reeves, T.C. (eds.) Proc. of E–Learn 2002 World Conference on E-Learning in Corporate, Government, Healthcare, & Higher Education (E-Learn 2002),, Norfolk, pp. 909–915. AACE (2002)Google Scholar
  46. 46.
    Schulte imWalde, S.: Clustering verbs semantically according to their alternation behaviour. In: Proceedings of the 18th International Conference on Computational Linguistics (COLING 2000) (2000) Google Scholar
  47. 47.
    Sporleder, C.: A galois lattice based approach to lexical inheritance hierarchy learning. In: Proceedings of the ECAI 2002 Workshop on Machine Learning and Natural Language Processing for Ontology Engineering, OLT 2002 (2002)Google Scholar
  48. 48.
    Stumme, G.: The concept classification of a terminology extended by conjunction and disjunction. In: Foo, N.Y., Göbel, R. (eds.) PRICAI 1996. LNCS, vol. 1114, Springer, Heidelberg (1996)Google Scholar
  49. 49.
    Stumme, G.: Local scaling in conceptual data systems. In: Eklund, P.W., Ellis, G., Mann, G. (eds.) ICCS 1996. LNCS (LNAI), vol. 1115, pp. 308–320. Springer, Heidelberg (1996)Google Scholar
  50. 50.
    Stumme, G.: Conceptual On-Line Analytical Processing. In: Tanaka, K., Ghandeharizadeh, S., Kambayashi, Y. (eds.) Information Organization and Databases, Boston, Dordrecht, London, pp. 191–203. Kluwer, Dordrecht (2000)Google Scholar
  51. 51.
    Stumme, G., Maedche, A.: FCA–Merge: Bottom-up merging of ontologies. In: Proc. 17th Intl. Conf. on Artificial Intelligence (IJCAI 2001), Seattle, WA, USA, pp. 225–230 (2001)Google Scholar
  52. 52.
    Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg concept lattices with Titanic. J. on Knowledge and Data Engineering 42(2), 189–222 (2002)zbMATHCrossRefGoogle Scholar
  53. 53.
    Stumme, G., Wolff, K.E.: Numerical aspects in the data model of conceptual information systems. In: Kambayashi, Y., Lee, D.-L., Lim, E.-p., Mohania, M., Masunaga, Y. (eds.) ER Workshops 1998. LNCS, vol. 1552, pp. 117–228. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  54. 54.
    Stumme, G., Wolff, K.E.: Computing in conceptual data systems with relational structures. In: Proc. Intl. Conf. on Knowledge Retrieval, Use, and Storage for Efficiency, Vancouver, Canada, August 11–13, pp. 206–219 (1997)Google Scholar
  55. 55.
    Stumme, G.: Boolesche begriffe. Master’s thesis, FB Mathematik, TU Darmstadt (1994)Google Scholar
  56. 56.
    Vogt, F., Wille, R.: TOSCANA – a graphical tool for analyzing and exploring data. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 226–233. Springer, Heidelberg (1995)Google Scholar
  57. 57.
    Wille, R.: Preconcept algebras and generalized double boolean algebras. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 14–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  58. 58.
    Wille, R.: Conceptual structures of multicontexts. In: Eklund, P.W., Ellis, G., Mann, G. (eds.) ICCS 1996. LNCS (LNAI), vol. 1115, pp. 23–39. Springer, Heidelberg (1996)Google Scholar
  59. 59.
    Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  60. 60.
    Zipf, G.: Selective Studies and the Principle of Relative Frequency in Language, Cambridge (1932)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Philipp Cimiano
    • 1
  • Andreas Hotho
    • 1
  • Gerd Stumme
    • 1
  • Julien Tane
    • 1
  1. 1.Institute for Applied Informatics and Formal Description Methods (AIFB)University of KarlsruheKarlsruheGermany

Personalised recommendations