Advertisement

Agreement Contexts in Formal Concept Analysis

  • Richard Cole
  • Peter Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

This paper describes a technique in which some columns of an n-ary relation are interpreted as defining a situation. For example when considering movies, critics and reviews we talk about the situation when the critic is a particular critic. We then construct a formal context called an agreement context designed to show that which is in common between the situations. We elaborate this idea in two ways: (i) by combining different types of situation; and (ii) using conceptual scales to introduce intervals of agreement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bar89]
    Barwise, J.: The situation in logic. Center for the Study of Language and Information, Stanford, CA (1989)Google Scholar
  2. [BH04]
    Becker, P., Hereth Correia, J.: The ToscanaJ suite for implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  3. [BS97]
    Barwise, J., Seligman, J.: Information flow: the logic of distributed systems. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  4. [CS00]
    Cole, R., Stumme, G.: CEM: A Conceptual Email Manager. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 438–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. [GW89]
    Ganter, B., Wille, R.: Conceptual scaling. In: Roberts, F. (ed.) Applications of combinatorics and graph theory to the biological and social sciences, pp. 139–167. Springer, New York (1989)Google Scholar
  6. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  7. [HS01]
    Hereth, J., Stumme, G.: Reverse pivoting in conceptual information systems. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 202–215. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. Wil96.
    Wille, R.: Relational graphs: A structure for representing relations. In: Priss, U., Corbett, D., Anagelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 34–47. Springer, Heidelberg (2002)Google Scholar
  9. [Wil97]
    Wille, R.: Conceptual graphs and formal concept analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 317–331. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. Wil92.
    Wille, R.: Relational graphs: A structure for representing relations. In: Priss, U., Corbett, D., Anagelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 34–47. Springer, Heidelberg (2002)Google Scholar
  11. [WL95]
    Wille, R., Lehmann, F.: A triadic approach to formal concept analysis. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS (LNAI), vol. 954, pp. 32–43. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Richard Cole
    • 1
  • Peter Becker
    • 1
  1. 1.School of Information Technology and Electrical Engineering (ITEE)The University of QueenslandAustralia

Personalised recommendations