Advertisement

Background Knowledge in Concept Graphs

  • Frithjof Dau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)

Abstract

Traditional logic can be understood as the investigation of the three main essential functions of thinking – concepts, judgements and conclusions. In the last years, in a new research field termed Contextual Logic, a mathematical theory of this logic is elaborated. Concepts have already been mathematically elaborated by Formal Concept Analysis. Judgements and Conclusions can be expressed by so-called Concept Graphs, which are built upon families of formal contexts.

There are two approaches to concept graphs: A semantical approach, which investigates the theory of concept graphs in an algebraic manner, and a logical approach, which focuses on derivation rules for concept graphs, relying on a separation between syntax and semantics. In [24], Wille introduced two forms of complex implications (object implications and concept implications) to the semantical approach. In this paper it is investigated how these implications can be incorporated into the logical approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandom, R.B.: Making it explicit. Reasoning, representing, and discursive commitment. Harvard University Press, Cambridge (1994); Suhrkamp (2001)Google Scholar
  2. 2.
    Dau, F.: The Logic System of Concept Graphs with Negation. LNCS (LNAI), vol. 2892. Springer, Heidelberg (2003) ISBN 3- 540-20607-8Google Scholar
  3. 3.
    Dau, F.: Concept Graphs without Negations: Standardmodels and Standardgraphs. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, p. 243. Springer, Heidelberg (2003) (This paper is a part of [2] as well) ISBN 3-540-40576-3CrossRefGoogle Scholar
  4. 4.
    Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic. To appear in the Proceedings of the First International Conference on Formal Concept Analysis (2003)Google Scholar
  5. 5.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  6. 6.
    Klinger, J.: Semiconcept Graphs: Syntax and Semantics. Diploma thesis, TU Darmstadt (2001)Google Scholar
  7. 7.
    Klinger, J.: Simple Semiconcept Graphs: A Boolean Logic Approach. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, p. 101. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Klinger, J.: Semiconcept Graphs with Variables. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 369. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Nicholson, M.: The pocket Aussie fact book. Penguin Books, Australia (1999)Google Scholar
  10. 10.
    Pollandt, S.: Relational Constructions on Semiconcept Graphs. In: Ganter, B., Mineau, G. (eds.) Conceptual Structures: Extracting and Representing Semantics. Contributions to ICCS, Stanford (2001)Google Scholar
  11. 11.
    Pollandt, S.: Relation Graphs: A Structure for Representing Relations in Contextual Logic of Relations. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 34. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. In: Ein Beitrag zur Restrukturierung der mathematischen Logik, Shaker Verlag, Aachen (1998)Google Scholar
  13. 13.
    Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 225–239. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Schoolmann, L., Wille, R.: Concept Graphs with Subdivision: A Semantic Approach. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley Publishing Company, Reading (1984)zbMATHGoogle Scholar
  16. 16.
    Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund, P.W. (eds.) Conceptual Structures: current research and practice, pp. 3–51. Ellis Horwood (1992)Google Scholar
  17. 17.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  18. 18.
    Wille, R.: Plädoyer für eine Philosophische Grundlegung der Begrifflichen Wissensverarbeitung. In: Wille, R., Zickwolff, M. (eds.) Begriffliche Wissensverarbeitung: Grundfragen und Aufgaben, pp. 11–25. B.I.–Wissenschaftsverlag, Mannheim (1994)Google Scholar
  19. 19.
    Wille, R.: Restructuring Mathematical Logic: An Approach Based on Peirce’s Pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, pp. 267–281. Marcel Dekker, New York (1996)Google Scholar
  20. 20.
    Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 265–276. Shaker, Aachen (2000)Google Scholar
  22. 22.
    Wille, R.: Lecture Notes on Contextual Logic of Relations. FB4-Preprint, TUDarmstadt (2000) Google Scholar
  23. 23.
    Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, p. 382. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Wille, R.: Conceptual Contents as Information – Basics for Contextual Judgement Logic. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Frithjof Dau
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations