Automated Lattice Drawing

  • Ralph Freese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


Lattice diagrams, known as Hasse diagrams, have played an ever increasing role in lattice theory and fields that use lattices as a tool. Initially regarded with suspicion, they now play an important role in both pure lattice theory and in data representation. Now that lattices can be created by software, it is important to have software that can automatically draw them.

This paper covers:
  • The role and history of the diagram.

  • What constitutes a good diagram.

  • Algorithms to produce good diagrams.

Recent work on software incorporating these algorithms into a drawing program will also be covered.


Rank Function Lattice Theory Congruence Lattice Modular Lattice Formal Concept Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M.E.: Uniquely complemented lattices. Selected Papers of Dilworth, R.P., Bogart, K., Freese, R., Kung, J. (eds.) The Dilworth Theorems, pp. 79–84. Birkhäuser, Basel (1990)Google Scholar
  2. 2.
    Aeschlimann, A., Schmid, J.: Drawing orders using less ink. Order 9, 5–13 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Birkhoff, G.: Lattice theory, rev. ed. Amer. Math. Soc. Colloquium Publications, Providence (1948) (rev. ed.)Google Scholar
  4. 4.
    Day, A., Herrmann, C., Wille, R.: On modular lattices with four generators. Algebra Universalis 2, 317–323 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Day, A., Freese, R.: A characterization of identities implying congruence modularity. I. Canad. J. Math. 32, 1140–1167 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dean, R.A.: Completely free lattices generated by partially ordered sets. Trans. Amer. Math. Soc. 83, 238–249 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dedekind, R.: Uber die von drei Moduln erzeugte Dualgruppe. Math. Annalen 53, 371–403 (1900)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dilworth, R.P.: The role of order in lattice theory, Ordered Sets. In: Rival, I. (ed.) Proc. of the Banff Symposium on Ordered Sets, D. Reidel, Dordrecht (1982)Google Scholar
  9. 9.
    Eades, P., Wormald, N.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Freese, R., Ježek, J., Nation, J.B.: Free lattices. Mathematical Surveys and Monographs, vol. 42. Amer. Math. Soc., Providence (1995)zbMATHGoogle Scholar
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999) ISBN 3-540-62771-5zbMATHGoogle Scholar
  12. 12.
    Garey, M., Johnson, D.: Computers and intractability, a guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Garg, A., Tamassia, R.: Advances in graph drawing, Algorithms and Complexity. In: Second Italian Conference, CASC 1994, Rome, Italy, pp. 12–21. Springer, Berlin (1994)Google Scholar
  15. 15.
    Knuth, D.E.: The art of computer programming, 2nd edn. Searching and Sorting, Addison- Wesley Series in Computer Science and Information Processing, vol. 3. Addison- Wesley Publishing Co., Reading (1998)Google Scholar
  16. 16.
    McLaughlin, J.E.: Atomic lattices with unique comparable complements. Proc. Amer. Math. Soc. 7, 864–866 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ore, O.: On the foundations of abstract algebra. I. Ann. Math. 36, 406–437 (1935)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Reid, C.: The search for E. T. Bell: also known as John Taine. Math. Assoc. Amer., Washington (1993)Google Scholar
  19. 19.
    Rival, I.: The diagram, Graphs and order. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci, vol. 147, pp. 103–133. Reidel, Dordrecht (1985)Google Scholar
  20. 20.
    Rival, I.: Reading, drawing, and order, Algebras and orders. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol. 389, pp. 359–404. Kluwer Acad. Publ., Dordrecht (1991)Google Scholar
  21. 21.
    Rival, I., Sands, B.: Pictures in lattice theory. Algebraic and geometric combinatorics 65, 341–355 (1982)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Rival, I., Wille, R.: Lattices freely generated by partially ordered sets: which can be drawn? J. Reine Angew. Math. 310, 56–80 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rolf, H.L.: The free lattice generated by a set of chains. Pacific J. Math. 8, 585–595 (1958)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Skorsky, M.: Endliche Verbände—Diagramme und Eigenschaften, Ph.D. thesis, Technische Hochschule Darmstadt (1992) Google Scholar
  25. 25.
    Stephan, J.: Liniendiagramme von verbänden, Technische Hochschule Darmstadt, Darmstadt, Diplomarbeit (1987)Google Scholar
  26. 26.
    Wille, R.: Lattices in data analysis: how to draw them with a computer. In: Rival, I. (ed.) Algorithms and order, Univ. Ottawa, pp. 33–58 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ralph Freese
    • 1
  1. 1.University of HawaiiHonoluluUSA

Personalised recommendations