Preconcept Algebras and Generalized Double Boolean Algebras

  • Rudolf Wille
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2961)


Boolean Concept Logic as an integrated generalization of Contextual Object Logic and Contextual Attribute Logic can be substantially developed on the basis of preconcept algebras. The main results reported in this paper are the Basic Theorem on Preconcept Algebras and the Theorem characterizing the equational class generated by all preconcept algebras by the equational axioms of the generalized double Boolean algebras.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bo54]
    Boole, G.: An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. Macmillan, Basingstoke (1854); Reprinted by Dover Publ., New York (1958)Google Scholar
  2. [DK03]
    Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic. FB4-Preprint, TU Darmstadt (2003)Google Scholar
  3. [DP92]
    Davey, B.A., Priestley, H.: Introduction to lattices and order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  4. [GW99a]
    Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1999); German version: Springer, Heidelberg (1996)zbMATHGoogle Scholar
  5. [GW99b]
    Ganter, B., Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W., Cyre, W. (eds.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 377–388. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. [HLSW00]
    Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of semiconcepts and double Boolean algebras. In: Contributions to General Algebra, vol. 13, pp. 175–188. Verlag Johannes Heyn, Klagenfurt (2001)Google Scholar
  7. [KV03]
    Klinger, J., Vormbrock, B.: Contextual Boolean Logic: how did it develop? In: Ganter, B., de Moor, A. (eds.) Using conceptual structures. Contributions to ICCS 2003, pp. 143–156. Shaker Verlag, Aachen (2003)Google Scholar
  8. [LW91]
    Luksch, P., Wille, R.: A mathematical model for conceptual knowledge systems. In: Bock, H.H., Ihm, P. (eds.) Classification, data analysis, and knowledge organisation, pp. 156–162. Springer, Heidelberg (1991)Google Scholar
  9. [Sch90]
    Schröder, E.: Algebra der Logik, Bd. 1. Leipzig (1890); published again by Chelsea Publ. Comp., New York (1966)Google Scholar
  10. [Se01]
    Seiler, T.B.: Begreifen und Verstehen. Ein Buch über Begriffe und Bedeutungen. Verlag Allgemeine Wissenschaft, Mühltal (2001)Google Scholar
  11. [SW86]
    Stahl, J., Wille, R.: Preconcepts and set representations of contexts. In: Gaul, W., Schader, M. (eds.) Classification as a tool of research, pp. 431–438. North- Holland, Amsterdam (1986)Google Scholar
  12. [VW03]
    Vormbrock, B., Wille, R.: Semiconcept and protoconcept algebras: the basic theorems. FB4-Preprint, TU Darmstadt (2003) Google Scholar
  13. [Wi82]
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  14. [Wi92]
    Wille, R.: Concept lattices and conceptual knowledge systems. Computers & Mathematics with Applications 23, 493–515 (1992)zbMATHCrossRefGoogle Scholar
  15. [Wi94]
    Wille, R.: Plädoyer für eine philosophische Grundlegung der Begrifflichen Wissensverarbeitung. In: Wille, R., Zickwolff, M. (eds.) Begriffliche Wissensverarbeitung Grundfragen und Aufgaben, pp. 11–25. B.I.-Wissenschaftsverlag, Mannheim (1994)Google Scholar
  16. [Wi96]
    Wille, R.: Restructuring mathematical logic: an approach based on Peirce’s pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, pp. 267–281. Marcel Dekker, New York (1996)Google Scholar
  17. [Wi00a]
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 317–331. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. [Wi00b]
    Wille, R.: Contextual Logic summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS, pp. 265–276. Shaker, Aachen (2000)Google Scholar
  19. [Wi01]
    Wille, R.: Boolean Judgment Logic. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 115–128. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. [Wi03a]
    Wille, R.: Conceptual content as information - basics for Conceptual Judgment Logic. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. [Wi03b]
    Wille, R.: Formal Concept Analysis as mathematical theory of concepts and concept hierarchies. FB4-Preprint, TU Darmstadt (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Rudolf Wille
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations