Advertisement

On the Universality of P Systems with Minimal Symport/Antiport Rules

  • Lila Kari
  • Carlos Martín-Vide
  • Andrei Păun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2950)

Abstract

P systems with symport/antiport rules of a minimal size (only one object passes in any direction in a communication step) were recently proven to be computationally universal. The proof from [2] uses systems with nine membranes. In this paper we improve this results, by showing that six membranes suffice. The optimality of this result remains open (we believe that the number of membranes can be reduced by one).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B.: Essential Cell Biology. An Introduction to the Molecular Biology of the Cell. Garland Publ. Inc., New York (1998)Google Scholar
  2. 2.
    Bernardini, F., Gheorghe, M.: On the Power of Minimal Symport/Antiport. In: Workshop on Membrane Computing, Tarragona (2003)Google Scholar
  3. 3.
    Freund, R., Păun, A.: Membrane Systems with Symport/Antiport: Universality Results. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 270–287. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Frisco, P., Hogeboom, J.H.: Simulating Counter Automata by P Systems with Symport/ Antiport. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 288–301. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Hopcroft, J., Ulmann, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  6. 6.
    Martín-Vide, C., Păun, A., Păun, G.: On the Power of P Systems with Symport and Antiport Rules. J. of Universal Computer Sci. 8(2), 317–331 (2002)Google Scholar
  7. 7.
    Păun, G.: The Power of Communication: P Systems with Symport/ Antiport. New Generation Computing 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Păun, G.: Computing with Membranes. J. of Computer and System Sciences 61(1), 108–143 (2000), Turku Center for Computer Science-TUCS Report No 208 (1998), http://www.tucs.fi
  9. 9.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Păun, G., Perez-Jimenez, M., Sancho-Caparrini, F.: On the Reachability Problem for P Systems with Symport/Antiport. In: Proc. Automata and Formal Languages Conf., Debrecen, Hungary (2002)Google Scholar
  11. 11.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, 3 volumes. Springer, Berlin (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Lila Kari
    • 1
  • Carlos Martín-Vide
    • 2
  • Andrei Păun
    • 3
  1. 1.Department of Computer ScienceUniversity of Western OntarioLondonCanada
  2. 2.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain
  3. 3.Department of Computer Science, College of Engineering and ScienceLouisiana Tech UniversityRustonUSA

Personalised recommendations