Advertisement

Transducers with Programmable Input by DNA Self-assembly

  • Nataša Jonoska
  • Shiping Liao
  • Nadrian C. Seeman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2950)

Abstract

Notions of Wang tiles, finite state machines and recursive functions are tied together. We show that there is a natural way to simulate finite state machines with output (transducers) with Wang tiles and we show that recursive (computable) functions can be obtained as composition of transducers through employing Wang tiles. We also show how a programmable transducer can be self-assembled using TX DNA molecules simulating Wang tiles and a linear array of DNA PX-JX2 nanodevices.

Keywords

Cellular Automaton Finite State Machine Recursive Function Input Symbol Programmable Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)CrossRefGoogle Scholar
  3. 3.
    Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA Computer. Science 296, 499–502 (2002)CrossRefGoogle Scholar
  4. 4.
    Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991)CrossRefGoogle Scholar
  5. 5.
    Cutland, N.J.: Computability, an introduction to recursive function theory. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  6. 6.
    Faulhammer, D., Curkas, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solution to chess problems. PNAS 97, 1385–1389 (2000)CrossRefGoogle Scholar
  7. 7.
    Fu, T.J., Seeman, N.C.: DNA double crossover structures. Biochemistry 32, 3211–3220 (1993)CrossRefGoogle Scholar
  8. 8.
    Head, T., et al.: Computing with DNA by operating on plasmids. BioSystems 57, 87–93 (2000)CrossRefGoogle Scholar
  9. 9.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  10. 10.
    Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)CrossRefGoogle Scholar
  11. 11.
    Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)CrossRefGoogle Scholar
  12. 12.
    Kallenbach, N.R., Ma, R.-I., Seeman, N.C.: An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983)CrossRefGoogle Scholar
  13. 13.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  14. 14.
    Manca, V., Martin-Vide, C., Păun, G.: New computing paradigms suggested by DNA computing: computing by carving. BioSystems 52, 47–54 (1999)CrossRefGoogle Scholar
  15. 15.
    Manca, V., Martin-Vide, C., Păun, G.: Iterated gsm mappings: a collapsing hierarchy. In: Karhumaki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Jewels are forever, pp. 182–193. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)CrossRefGoogle Scholar
  17. 17.
    Mao, C., Sun, W., Shen, Z., Seeman, N.C.: A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (2000)Google Scholar
  18. 18.
    Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles (abstract). In: Preproceedings of the 9th International Meeting of DNA Based Computers, June 1-4 (2003)Google Scholar
  19. 19.
    Sa-Ardyen, P., Jonoska, N., Seeman, N.: Self-assembling DNA graphs. Journal of Natural Computing (to appear)Google Scholar
  20. 20.
    Seeman, N.C.: DNA junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)CrossRefGoogle Scholar
  21. 21.
    Seeman, N.C.: DNA nicks and nodes and nanotechnology. NanoLetters 1, 22–26 (2001)Google Scholar
  22. 22.
    Siwak, P.: Soliton like dynamics of filtrons on cyclic automata. Inverse Problems 17, 897–918 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5-arm and 6-arm DNA junctions. Biochemistry 30, 5667–5674 (1991)CrossRefGoogle Scholar
  24. 24.
    Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA computers II. AMS DIMACS series, vol. 44, pp. 191–214 (1998)Google Scholar
  25. 25.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of twodimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  26. 26.
    Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)CrossRefGoogle Scholar
  27. 27.
    Yan, H., Seeman, N.C.: Edge-sharing motifs in DNA nanotechnology. Journal of Supramolecular Chemistry 1, 229–237 (2003)CrossRefGoogle Scholar
  28. 28.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel Jr., F.C.: A DNA fueled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 160, 1661–1669 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Nataša Jonoska
    • 1
  • Shiping Liao
    • 2
  • Nadrian C. Seeman
    • 2
  1. 1.Department of MathematicsUniversity of South FloridaTampaUSA
  2. 2.Department of ChemistryNew York UniversityNew YorkUSA

Personalised recommendations