Advertisement

Formal Properties of Gene Assembly: Equivalence Problem for Overlap Graphs

  • Tero Harju
  • Ion Petre
  • Grzegorz Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2950)

Abstract

Gene assembly in ciliates is a life process fascinating from both the biological and the computational points of view. Several formal models of this process have been formulated and investigated, among them a model based on (legal) strings and a model based on (overlap) graphs. The latter is more abstract because the translation of legal strings into overlap graphs is not injective. In this paper we consider and solve the overlap equivalence problem for realistic strings: when do two different realistic legal strings translate into the same overlap graph? Realistic legal strings are legal strings that “really” correspond to genes generated during the gene assembly process.

Keywords

Formal Property Equivalence Problem Gene Assembly Signed Graph Circle Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouchet, A.: Circle graphs. Combinatorica 7, 243–254 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bouchet, A.: Circle graph obstructions. J. Combin. Theory Ser. B 60, 107–144 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    de Fraysseix, H.: A characterization of circle graphs. European J. Combin. 5, 223–238 (1984)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ehrenfeucht, A., et al.: Formal systems for gene assembly in ciliates. Theoret. Comput. Sci. 292, 199–219 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ehrenfeucht, A., et al.: Characterizing the micronuclear gene patterns in ciliates. Theory of Computation and Systems 35, 501–519 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Harju, T., Rozenberg, G.: Gene assembly through cyclic graph decomposition. Theoretic Comput. Syst. 281, 325–349 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Universal and simple operations for gene assembly in ciliates. In: Mitrana, V., Martin-Vide, C. (eds.) Words, Sequences, Languages: where Computer Science, Biology and Linguistics Meet, pp. 329–342. Kluwer Academic Publishers, Dortrecht (2001)Google Scholar
  8. 8.
    Ehrenfeucht, A., et al.: String and graph reduction systems for gene assembly in ciliates. Math. Structures Comput. Sci. 12, 113–134 (2001)MathSciNetGoogle Scholar
  9. 9.
    Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: Circularity and other invariants of gene assembly in cliates. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups, and Transductions, pp. 81–97. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Prescott, D.M., Rozenberg, G.: Computational aspects of gene (un)scrambling in ciliates. In: Landweber, L., Winfree, E. (eds.) Evolution as Computation, pp. 45–86. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Harju, T., Rozenberg, G.: Computational processes in living cells: gene assembly in ciliates. Lecure Notes in Comput. Sci. (to appear)Google Scholar
  12. 12.
    Landweber, L.F., Kari, L.: The evolution of cellular computing: nature’s solution to a computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA Based Computers, Philadelphia, PA, pp. 3–15 (1998)Google Scholar
  13. 13.
    Landweber, L.F., Kari, L.: Universal molecular computation in ciliates. In: Landweber, L., Winfree, E. (eds.) Evolution as Computation, Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Prescott, D.M.: The unusual organization and processing of genomic DNA in Hypotrichous ciliates. Trends in Genet. 8, 439–445 (1992)Google Scholar
  15. 15.
    Prescott, D.M.: The DNA of ciliated protozoa. Microbiol Rev. 58(2), 233–267 (1994)Google Scholar
  16. 16.
    Prescott, D.M.: Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat. Rev. Genet. 1(3), 191–198 (2000)CrossRefGoogle Scholar
  17. 17.
    Prescott, D.M., Ehrenfeucht, A., Rozenberg, G.: Molecular operations for DNA processing in hypotrichous ciliates. European Journal of Protistology 37, 241–260 (2001)CrossRefGoogle Scholar
  18. 18.
    Prescott, D.M., Rozenberg, G.: How ciliates manipulate their own DNA – A splendid example of natural computing. Natural Computing 1, 165–183 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tero Harju
    • 1
  • Ion Petre
    • 2
  • Grzegorz Rozenberg
    • 3
    • 4
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.Department of Computer ScienceÅbo Akademi UniversityTurkuFinland
  3. 3.Leiden Institute for Advanced Computer ScienceLeiden UniversityLeidenthe Netherlands
  4. 4.Department of Computer ScienceUniversity of ColoradoBoulderUSA

Personalised recommendations