Advertisement

DNA-based Cryptography

  • Ashish Gehani
  • Thomas LaBean
  • John Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2950)

Abstract

Recent research has considered DNA as a medium for ultra-scale computation and for ultra-compact information storage. One potential key application is DNA-based, molecular cryptography systems. We present some procedures for DNA-based cryptography based on one-time-pads that are in principle unbreakable. Practical applications of cryptographic systems based on one-time-pads are limited in conventional electronic media by the size of the one-time-pad; however DNA provides a much more compact storage medium, and an extremely small amount of DNA suffices even for huge one-time-pads. We detail procedures for two DNA one-time-pad encryption schemes: (i) a substitution method using libraries of distinct pads, each of which defines a specific, randomly generated, pair-wise mapping; and (ii) an XOR scheme utilizing molecular computation and indexed, random key strings. These methods can be applied either for the encryption of natural DNA or for artificial DNA encoding binary data. In the latter case, we also present a novel use of chip-based DNA micro-array technology for 2D data input and output. Finally, we examine a class of DNA steganography systems, which secretly tag the input DNA and then hide it within collections of other DNA. We consider potential limitations of these steganographic techniques, proving that in theory the message hidden with such a method can be recovered by an adversary. We also discuss various modified DNA steganography methods which appear to have improved security.

Keywords

Compression Ratio Discrete Math Encrypt Message Theoretical Comp DIMACS Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Barnes, W.M.: PCR amplification of up to 35-kb DNA with high fidelity and high yield from bacteriophage templates. Proc. Natl. Acad. Sci. 91, 2216–2220 (1994)CrossRefGoogle Scholar
  3. 3.
    Baum, E.B.: Building an associative memory vastly larger than the brain. Science 268, 583–585 (1995)CrossRefGoogle Scholar
  4. 4.
    Bell, T., Witten, I.H., Cleary, J.G.: Modeling for Text Compression. ACM Computing Surveys 21(4), 557–592 (1989)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Dunworth, C., Lipton, R.J.: Breaking DES Using a Molecular Computer. In: Baum, E.B., Lipton, R.J. (eds.) DNA Based Computers. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence (1996)Google Scholar
  6. 6.
    Blanchard, A.P., Kaiser, R.J.: High-density oligonucleotide arrays. Biosens. Bioelec. 11, 687–690 (1996)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: Making DNA computers error resistant. In: Landwaber, L., Baum, E. (eds.) DNA based computer II. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 44 (1999)Google Scholar
  8. 8.
    Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D.J., Morris, M.S., Fodor, S.P.A.: Accessing genetic information with high-density DNA arrays. Science 274, 610–614 (1996)CrossRefGoogle Scholar
  9. 9.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, New York (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr., S.E.: Good Encodings for DNA-based Solutions to Combinatorial Problems. In: Landwaber, L., Baum, E. (eds.) DNA based computer II. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 44 (1999); Proceedings of the Second Annual Meeting on DNA Based Computers. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, pp. 1052–1798. American Mathematical Society, Providence (1996)Google Scholar
  11. 11.
    Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr., S.E.: Reliability and efficiency of a DNA-based computation. Phys. Rev. Lett. 80, 417–420 (1998)CrossRefGoogle Scholar
  12. 12.
    Fodor, S., Read, J.L., Pirrung, M.C., Stryer, L., Tsai Lu, A., Solas, D.: Lightdirected spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991)CrossRefGoogle Scholar
  13. 13.
    Frutos, A.G., Thiel, A.J., Condon, A.E., Smith, L.M., Corn, R.M.: DNA Computing at Surfaces: 4 Base Mismatch Word Design. In: Rubin, H., Wood, D. (eds.) DNA based computer III. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 48, p. 238 (1999)Google Scholar
  14. 14.
    Gray, J.M., Frutos, T.G., Michael Berman, A., Condon, A.E., Lagally, M.G., Smith, L.M., Corn, R.M.: Reducing Errors in DNA Computing by Appropriate Word Design (November 1996)Google Scholar
  15. 15.
    Grumbach, S., Tahi, F.: A new challenge for compression algorithms: genetic sequences. Inf. Proc. and Management 30(6), 875–886 (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Guarnieri, F., Fliss, M., Bancroft, C.: Making DNA Add. Science 273, 220–223 (1996)CrossRefGoogle Scholar
  17. 17.
    Gupta, V., Parthasarathy, S., Zaki, M.J.: Arithmetic and Logic Operations with DNA. In: Rubin, H., Wood, D. (eds.) DNA based computer III. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 48, pp. 212–220 (1999)Google Scholar
  18. 18.
    Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards Parallel Evaluation and Learning of Boolean μ-Formulas with Molecules. In: Rubin, H., Wood, D. (eds.) DNA based computer III. DIMACS series in Discrete Math. and Theoretical Comp. Sci., vol. 48, pp. 105–114 (1999)Google Scholar
  19. 19.
    Head, T.: Splicing schemes and DNA. In: Rozenberg, G., Salomaa, A. (eds.) Lindenmayer Systems; Impact on Theoretical computer science and developmental biology, pp. 371–383. Springer, Berlin (1992)Google Scholar
  20. 20.
    Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89, 10915–10919 (1992)CrossRefGoogle Scholar
  21. 21.
    Kahn, D.: The Codebreakers. Macmillan, New York (1967)Google Scholar
  22. 22.
    Klein, J.P., Leete, T.H., Rubin, H.: A biomolecular implementation of logical reversible computation with minimal energy dissipation. In: Kari, L., Rubin, H., Wood, D.H. (eds.) Proceedings 4th DIMACS Workshop on DNA Based Computers, pp. 15–23. University of Pennysylvania, Philadelphia (1998)Google Scholar
  23. 23.
    Kotera, M., Bourdat, A.G., Defrancq, E., Lhomme, J.: A highly efficient synthesis of oligodeoxyribonucleotides containing the 2’-deoxyribonolactone lesion. J. Am. Chem. Soc. 120, 11810–11811 (1998)CrossRefGoogle Scholar
  24. 24.
    LaBean, T.H., Butt, T.R.: Methods and materials for producing gene libraries, U.S. Patent Number 5,656,467 (1997)Google Scholar
  25. 25.
    LaBean, T., Kauffman, S.A.: Design of synthetic gene libraries encoding random sequence proteins with desired ensemble characteristics. Protein Science 2, 1249–1254 (1993)CrossRefGoogle Scholar
  26. 26.
    LaBean, T.H., Winfree, E., Reif, J.H.: Experimental Progress in Computation by Self-Assembly of DNA Tilings. DNA Based Computers V (1999)Google Scholar
  27. 27.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, H.J.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  28. 28.
    Li, X., Yang, X., Qi, J., Seeman, N.C.: Antiparallel DNA double crossover molecules as components for nanoconstruction. J. Amer. Chem. Soc. 118, 6131–6140 (1996)CrossRefGoogle Scholar
  29. 29.
    Loewenstern, Y.: Significantly Lower Entropy Estimates for Natural DNA Sequences. In: DCC: Data Compression Conference, pp. 151–161. IEEE Computer Society TCC, Los Alamitos (1997)CrossRefGoogle Scholar
  30. 30.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)CrossRefGoogle Scholar
  31. 31.
    Mills Jr., A.P., Yurke, B., Platzman, P.M.: Article for analog vector algebra computation. In: Kari, L., Rubin, H., Wood, D.H. (eds.) Proceedings 4th DIMACS Workshop on DNA Based Computers, University of Pennysylvania, Philadelphia, pp. 175–180 (1998)Google Scholar
  32. 32.
    Mir, K.U.: A Restricted Genetic Alphabet for DNA Computing. In: Proceedings of the Second Annual Meeting on DNA Based Computers, Princeton University (1996); Landwaber, L., Baum, E. (eds.): DNA based computer II. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 44 (1999)Google Scholar
  33. 33.
    Nevill-Manning, C.G., Witten, I.H.: Protein is Incompressible. In: IEEE Data Compression Conference, pp. 257–266. IEEE Computer Society TCC, Los Alamitos (1999)Google Scholar
  34. 34.
    Orlian, M., Guarnieri, F., Bancroft, C.: Parallel Primer Extension Horizontal Chain Reactions as a Paradigm of Parallel DNA-Based Computation. In: Rubin, H., Wood, D. (eds.) DNA based computer III. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 48, pp. 142–158 (1999)Google Scholar
  35. 35.
    Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., Fodor, S.P.: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl Acad. Sci. USA 91, 5022–5026 (1994)CrossRefGoogle Scholar
  36. 36.
    Reif, J.H.: Local Parallel Biomolecular Computing. In: Rubin, H., Wood, D. (eds.) DNA based computer III. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 48, pp. 243–264 (1999)Google Scholar
  37. 37.
    Reif, J.H.: Paradigms for Biomolecular Computation. In: Calude, C.S., Casti, J., Dinneen, M.J. (eds.) Unconventional Models of Computation. Springer, Heidelberg (1998)Google Scholar
  38. 38.
    Reif, J.H.: Parallel Molecular Computation: Models and Simulations. Algorithmica, Special Issue on Computational Biology (1998)Google Scholar
  39. 39.
    Roberts, S.S.: Turbocharged PCR. Jour. of N.I.H. Research 6, 46–82 (1994)Google Scholar
  40. 40.
    Rose, J.A., Deaton, R., Garzon, M., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: The effect of uniform melting temperatures on the efficiency of DNA computing. In: Rubin, H., Wood, D. (eds.) DNA based computer III. DIMACS series in Discrete Math. and Theoretical Comp. Sci., vol. 48, pp. 35–42 (1999)Google Scholar
  41. 41.
    Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F., Rothemund, P.W.K., Adleman, L.M.: A Sticker Based Architecture for DNA Computation. In: Landwaber, L., Baum, E. (eds.) DNA based computer II. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 44, pp. 1–29 (1999)Google Scholar
  42. 42.
    Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons, Inc., Chichester (1996)zbMATHGoogle Scholar
  43. 43.
    Storer, J.A.: Data Compression: Methods and Theory. Computer Science Press, Rockville (1988)Google Scholar
  44. 44.
    Suyama, A.: DNA chips - Integrated Chemical Circuits for DNA Diagnosis and DNA computers (1998)Google Scholar
  45. 45.
    Taylor, C.T., Risca, V., Bancroft, C.: Hiding messages in DNA microdots. Nature 399, 533–534 (1999)CrossRefGoogle Scholar
  46. 46.
    Winfree, E.: On the Computational Power of DNA Annealing and Ligation. In: Baum, E.B., Lipton, R.J. (eds.) DNA Based Computers. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, pp. 187–198. American Mathematical Society, Providence (1995)Google Scholar
  47. 47.
    Winfree, E.: Complexity of Restricted and Unrestricted Models of Molecular Computation. In: Baum, E.B., Lipton, R.J. (eds.) DNA Based Computers. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 27, pp. 187–198. American Mathematical Society, Providence (1995)Google Scholar
  48. 48.
    Winfree, E.: Simulations of Computing by Self-Assembly. In: Proceedings of the Fourth DIMACS Meeting on DNA Based Computing, pp. 213–242 (1998)Google Scholar
  49. 49.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and Self-Assembly of Two Dimensional DNA Crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  50. 50.
    Winfree, E., Yang, X., Seeman, N.C.: Universal Computation via Self-assembly of DNA: Some Theory and Experiments. In: Landwaber, L., Baum, E. (eds.) DNA based computer II. DIMACS series in Discrete Math. and Theoretical Comp. Sci, vol. 44, pp. 191–214 (1999)Google Scholar
  51. 51.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory IT-23, 337–343 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ashish Gehani
    • 1
  • Thomas LaBean
    • 1
  • John Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations